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Abstract 

Cerchar Abrasivity Index (CAI) test is commonly used to assess the abrasiveness of rocks due to its 
efficiency and simplicity. This research focuses on estimating CAI values based on the petrographical, 
textural, and mechanical characteristics of igneous rock. The study examines the potential correlation 
between CAI values, petrographical, and textural characteristics using a dataset comprising 15 samples 
from 5 different types of igneous rocks. The researchers employed a range of statistical analyses, 

including Pearson's correlations, Simple and Multiple linear and non-linear regression, and artificial 
neural network (ANN) analyses. These methods were used to examine the relationship between CAI 
values and various parameters. CAI has a direct correlation with Texture Coefficient (TC), 
Heterogeneity (H), Saturation Index (SI), Uniaxial Compressive Strength (UCS), Abrasivity Index 
(ABI), and Rock Abrasivity Index (RAI), with the exception of Feldspathic Index (FI) and Porosity (P). 
Results showed that by increasing CAI values, the TC, H, RAI, ABI, and SI increased, and FI decreased. 
By increasing TC and H, the percentage of quartz increases, and alkali feldspar decreases. The study 

suggests SI, FI, TC, and H are appropriate in assessing the abrasiveness of igneous rocks. Validation of 
the results displayed that new models can be used for predicting CAI with acceptable accuracy. 
 
Keywords: Cerchar Abrasivity Index, Petrographic Characteristics, Textural Coefficient, 
Heterogeneity, Igneous Rocks. 
 

Introduction 

 

In construction and mining projects, rock excavation can be carried out using traditional drilling 

and blasting methods or mechanical excavators. However, one challenge encountered during 

the excavation process is the varying strength and geomechanical properties of the rock 

surfaces, which significantly reduces the effectiveness of cutting tools. As a result, a significant 

portion of the excavation budget needs to be allocated towards repairing or replacing these rock 

cutting tools (Hamzaban et al. 2014; Lin et al. 2020). Sliding on the rock surface can cause 

degradation of the cutting tools used in excavation. The abrasiveness of the rock is influenced 

by various features, including the average quartz grain size, quartz, and abrasive mineral 

content, type of cement present, and degree of cementation (Yarali et al., 2008). These factors 

play a role in determining the rock's abrasiveness and can contribute to the wear and 
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deterioration of cutting tools during the excavation process. 

    Methods for determining the abrasiveness of rocks can be classified into two categories: 

petrological and mechanical tests. (West, 1981). Petrological tests involve examining the mineral 

composition, grain size, texture, and cementation of the rock. Mechanical tests, on the other hand, 

focus on assessing the physical and mechanical properties that influence abrasiveness. In recent 

decades mechanical tests such as the LCPC test, NTNU test, the Cerchar test, Cerchar hardness 

index (CHI), and petrological parameters including rock abrasiveness index (RAI), Schimazek's 

value (Sch), and petrographic studies were used to evaluate the rock abrasion (Yarali et al., 2008; 

Yarali, 2017; Balani et al., 2017; Majeed & Abu Bakar, 2015; Aydin, 2019). The Cerchar test is 

commonly employed in civil projects to assess rock abrasiveness. However, to establish a better 

understanding of its correlation with geomechanical properties, further investigations are 

necessary. Several researchers have proposed relationships between the Cerchar Abrasivity Index 

(CAI) and various petrographical, physical, and mechanical characteristics of rocks (Ko et al., 

2016; Undul & Er, 2017; Aligholi et al., 2018; Yagiz et al., 2020; Shi et al., 2024). These 

relationships can provide valuable insights into the abrasiveness of rocks. The potential 

relationships between CAI and rock characteristics showed in Table 1.  

    The CAI test offers advantages in terms of its ease, affordability, and time efficiency. As a 

result, it is more commonly utilized for assessing rock abrasiveness compared to other methods 

like NTNU and LCPC (Aydin, 2019; Yagiz et al., 2020; Massalov et al., 2020). The CAI test 

method has been employed by using the British coal mining and is applied in the tunneling 

engineering as well (Karrari et al., 2023; Karrari et al., 2024). The CAI test is developed 

according to the French standard (AFNOR, 2000). ISRM has proposed a new method (ISRM-

SM) to carry out this test. 
 

Table 1. Relationships between CAI and rock characteristics 
Scholars Correlation with CAI Rock type 

(Er and Tugrul 2016) CAI = 2.12 + 0.03 Wa Granitic Rocks 

 CAI = 1.87 + 0.04 SH  

 CAI = 2.55 + 0.58 Vp  

 CAI= 4.52+1.47 Qs  

 CAI= 2.73+0.04 SHV  

 CAI= 3.19+0.02 UCS  

 CAI= 3.73+0.11 BTS  

(Ko et al. 2016) CAI = 4.8668 + 0.05467 UCS – 0.149 B1 – 0.2945 B3 Granite, Pegmatite, Propylite, 

Diorite, Gabbro  

 CAI = -1.102 POPA + 3.850 Andesite and Rhyodacite 

 CAI = 1.1265 (POPA)2 - 3.0879 (POPA) + 4.6078  

 CAI = - 1.006 PPlg.Felds + 4.4504  

 CAI = -0.4753 (PPlg.Felds)^ 2 + 0.3459 PPlg.Felds + 

3.6317 

 

 CAI = 11.045(FOPA)^ 2 - 10.578(FOPA) + 5.0484  

(Garzón-Roca and 

Torrijo 2020) 

CAI = 1.37CAI* + 1.88 Andesitic Rocks 

(Torrijo Garzón-Roca 

2020) 

CAI = 1.8243 PL (mm) + 0.4447 Andesitic rocks 

 CAI = 0.0305 PL (%) + 0.6360  

 CAI = 0.055SiO2 + 0.026FeO + 0.055MgO 

+ 0.024CaO + 0.022Na2O + 0.022K2O -1.32 

 

Wa: Waveness average, SH: shore harness, Vp: P-wave velocity, Qs: quartz size, SHV: Schmidt hardness value, 

BTS: Brazilian tensile strength, UCS: Uniaxial compressive strength, B1: Brittleness value (B1 = UCS /BTS) B3: 

Brittleness value (B3 = UCS*BTS/2), POPA: Perimeter of opaque minerals, PPlg.Feld: Perimeter of plagioclase 

feldspar, FOPA: Feret’s diameter of opaque minerals, PL (mm): Plagioclase grain size, PL (%): Plagioclase 

percentage, (SiO2, FeO, MgO, CaO, Na2O, and K2O percentage). 
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    The CAI test consists of scratching a steel stylus by the hardness of (HRC 55 ± 1) with a 90° 

conical tip (Alber et al., 2014). In this study, according to the ISRM-SM, five tests are carried 

out on each sample to obtain the average CAI value. The scratching action's speed (accepted by 

ISRM-SM standard) is 10 mm/s for the CAI test.  

    Petrological, textural, and mechanical rock parameters are useful for obtaining the rock’s 

abrasiveness. These factors have been employed by researchers to measure and evaluate the 

abrasiveness of rocks (Undul & Er, 2017; Yagiz et al., 2020; Teymen, 2020). In the following, 

recent studies that used petrographic, textural, and mechanical characteristics to evaluate the 

CAI are presented. 

    In the study conducted by Er & Tugrul (2016), empirical relationships were established 

between mineralogical, chemical, petrographical, and physicomechanical properties of 

different granitic rocks and the Cerchar Abrasivity Index (CAI). The results indicated that there 

was a positive correlation between the size and content of quartz grains in the granitic rocks 

and the CAI. This means that as the size and content of quartz grains increased, the CAI also 

increased, suggesting a higher level of abrasiveness. However, no significant relationship was 

observed between CAI and other minerals present in the granitic rocks, indicating that the 

quartz grains played a more dominant role in determining the rock's abrasiveness in this 

particular study. The influence of geomechanical characteristics on Cerchar abrasivity index in 

igneous and metamorphic rocks investigated by Ko et al., (2016). The result of multiple 

regression analysis shows that quartz mineral is not as important as UCS and brittleness index 

(B3) to estimate the CAI values in igneous rocks. Previous scholars ignored the effect of textural 

properties on CAI value (e.g., Er & Tugrul, 2016; Ko et al., 2016). Because textural properties 

could show the effect of various minerals, it would be useful to evaluate its possible impact. 

Undul & Er (2017) studied the effect of texture and geo-mechanical characteristics on the 

abrasiveness of 23 igneous rocks (Andesite and Rhyodacite). The outcomes of physical and 

mechanical tests showed that as P-wave velocity, UCS, Brittleness index (B3), BTS, and E 

increased, the CAI values increased as well. According to their study, increasing opaque 

minerals and grain sizes of altered plagioclase can decrease the CAI values. Aligholi et al. 

(2018) predicted the engineering characteristics of igneous rocks by using petrographic 

analysis. Their research shows that fine grained (0.08 - 0.15 mm) igneous rocks have better 

geomechanical properties (porosity, dry unit weight, P-wave velocity, IS50, and less 

abrasiveness (CAI) in comparison with the coarse grained (0.30-1 mm) ones. 

    The primary objective of this research is to estimate CAI values using petrographical, textural, 

and mechanical rock characteristics. This approach helps to reduce the costs associated with 

sample preparation and transportation, as well as the time required for conducting laboratory 

experiments. On the other hand, petrographical studies can be conducted using smaller samples 

and basic laboratory equipment that is readily available. However, not all laboratories may have 

the specific equipment required for the CAI test. As a result, empirical analyses have been 

developed to estimate CAI values based on the petrographical characteristics of rocks, providing 

an alternative approach in cases where the necessary equipment is not accessible. Regression and 

ANN analyses are commonly applied in engineering studies and confirmed to be effective in 

relating CAI with geomechanical features (e.g., Majeed & Abu Bakar, 2015; Teymen, 2020; 

Garzón-Roca et al., 2020; Torrijo Garzón-Roca et al., 2020; Yagiz et al., 2020). Simple 

regression, multiple linear and non-linear regression, and ANN models are used in this research.  

 

Methods 

 

Sampling and geomechanical laboratory tests 

 

For this research, a total of 15 samples were collected from seven sectors along the tunnel route 
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in the Gelas water transfer project in west Azerbaijan (Naghadeh City) of Iran (Fig. 1). 15 rock 

samples block from Adit (1500, 1550, 1600, and 1650) and cylindrical cores (BH12, KST22, 

KST23-S4-19 m, KST23-S5-268m, KST23-S6-206m, KST16, KSC1-45m, KSC1-82m, and 

KSA2) have been analyzed in this study. The photo of cylindrical core rock samples is shown 

in Figure 2. The selection of samples from various sectors allows for a broader representation 

of the geological conditions along the tunnel route, providing a more comprehensive 

understanding of the rock characteristics and their abrasiveness. The objective is to obtain CAI, 

petrographical, textural, and mechanical rock characteristics for estimating wear disc cutters of 

TBM. The wear disc cutter numbers will be obtained in the project in the future. 

    The sampling procedure followed the guidelines outlined in the ISRM 2007 guidelines. The 

collected samples included both slightly weathered and unweathered rock specimens. Special 

care was taken to ensure that the rock block samples were homogeneous and free from any 

weakness planes that could affect the test results. The cylindrical cores and rock blocks were 

obtained using a drilling process with a diameter of 54.7 millimeters. Rock core samples are 

prepared according to the ISRM (2007) standard. The porosity, unit weight, BTS, UCS, and 

point load strength (IS50) tests were done based on ISRM (2007). In addition, the CAI test was 

performed based on ISRM (Alber et al., 2014). The list of test names, number of tests, and used 

standards are indicated in Table 2. 

 
Table 2. The list of test names, number of tests and used standard 

Used standard Number of tests Test name 

ISRM (2007) 5 Porosity 

ISRM (2007) 5 Unit weight 

ISRM (2007) 10 BTS 

ISRM (2007) 5 UCS 

ISRM (2007) 10 IS50 

ISRM (2014). 5 CAI 

 

 
Figure 1. Location and geological map of the rock samples 
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Figure 2. The picture of cylindrical cores rock samples 

 

    In this study, various statistical analyses were conducted to investigate the relationships 

between the Cerchar Abrasivity Index, petrographic and textural features, and engineering 

properties of the rocks. These analyses included Pearson's correlation, simple regression, 

multiple linear regression, non-linear regression, and artificial neural network (ANN) analysis. 

These statistical techniques were employed to identify and quantify the relations between CAI 

values and the examined rock characteristics. By utilizing these analytical approaches, the study 

aimed to establish meaningful relationships and gain insights into how the petrographic and 

textural features of the rocks influence their CAI values and engineering properties. The 

statistical analysis was performed utilizing SPSS software version 23. Also, the ANN analysis 

was performed utilizing Matlab software version R2016a. 

 

Cerchar abrasivity test 

 

The CAI tests in this study were performed using the third-generation device developed by 

West (1989). A total of fifty-five HRC styluses were utilized for the testing process. The rock 

samples were securely held in a vise under a 7-kilogram load, and the surface was scratched at 

regular 10-millimeter intervals, as illustrated in (Fig. 3). The specimens had a diameter of 54 

millimeters, a height ranging from 30 to 50 millimeters, and a smooth surface achieved through 

saw cutting. To ensure accurate and reliable results, this technique was carried out a minimum 

of five times in two directions using a new or resharpened steel tip for each individual sample. 
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Petrographic studies of rock samples  

 

For the petrographic analysis, thin sections of the rock samples were studied using optical 

microscopy (Table 3). Thin sections are indicated for petrographic analysis in Figure 4. The 

major minerals, including quartz, plagioclase, and alkali feldspar, were classified according to 

the Streckeisen diagram of petrographical classification, following the standards set by the 

International Union of Geological Sciences (Streckeisen, 1976).  

 
Table 3. Modal analysis, locations, and petrographic names of the studied rocks 

Rock No Location Mineralogy (%) Petrographic name 

1 KSC1-82m 
Alf: 42.65, Pl: 28.46, Qz: 18.43, Mos: -, Bio: 6.33, Chl: 

3.00, Opa: 0.13, Amp: 1.00 
Monzogranite 

2 KST23-S5-268m 
Alf: 30.72, Pl: 14.30, Qz: 12.70, Mos: 12.13, Bio: 

32.47, Chl: 1.00, Opa: 1.44, Amp: 1.50 
Syenogranite 

3 KSa2 
Alf: 38.38, Pl: 30.75, Qz: 12.73, Mos: -, Bio: 15.10, 

Chl: 1.50, Opa: 0.06, Amp: 1.50 
Quartz monzonite 

4 KST22 
Alf: 50.21, Pl: 26.96, Qz: 6.97, Mos: -, Bio: 9.83, Chl: 

5.00, Opa: 0.25, Amp: 1.00 
Quartz syenite 

5 KST16 
Alf: 42.85, Pl: 15.36, Qz: 12.81, Mos: -, Bio: 15.68, 

Chl: 1.00, Opa: 1.41, Amp: 2.00 
Syenogranite 

6 KST16 
Alf: 52.43, Pl: 13.88, Qz: 11.52, Mos: 2.13, Bio: 16.85, 

Chl: 1.00, Opa: 0.36, Amp: 2.20 
Syenogranite 

7 BH12 
Alf: 50.92, Pl: 10.96, Qz: 9.97, Mos: - , Bio: 20.61, 

Chl: 4.50, Opa: 0.59, Amp: 2.60 
Quartz syenite 

8 BH12 
Alf: 42.85, Pl: 11.32, Qz: 15.03, Mos: 1.29, Bio: 

12.96, Chl: 2.00, Opa: 9.50, Amp: 2.50, 
Syenogranite 

9 1500 km 
Alf: 42.76, Pl: 14.36, Qz: 26.88, Mos: -, Bio: 11.33, 

Chl: 4.00, Opa: 0.80, Amp: -, 
Syenogranite 

10 1550 km 
Alf: 36.94, Pl: 19.37, Qz: 25.30, Bio: 14.26, Mos: -, 

Chl: 2.25, Opa: 0.13, Amp: 1.75, 
Monzogranite 

11 1600 km 
Alf: 52.75, Pl: 10.84, Qz: 23.93, Mos: -, Bio: 6.39, Chl: 

4.00, Opa: 0.06, Amp: 3.00 
Syenogranite 

12 1650 km 
Alf: 46.54, Pl: 23.57, Qz: 21.23, Mos: 1.00, Bio: 7.07, 

Chl: 0.50, Opa: - , Amp: 0.10 
Syenogranite 

13 KST23-S4-191m 
Alf: 12.00, Pl: 26.30, Qz: 39.20, Mos: 5.00, Bio: 8.00, 

Chl: 2.00, Kao: 2.50, Opa: 4.00, Amp: 1.00, 
Granodiorite 

14 
KSC1-45m 

 

Alf: 23.00, Pl: 20.30, Qz: 37.41, Mos: 3.00, Bio: 11.80, 

Chl: 2.5, Kao: 2.00, Opa: - , Amp: 0.00 
Monzogranite 

15 KST23-S6-206m 
Alf: 50.60, Pl: 28.40, Qz: 8.00, Mos: 1.00, Bio: 10.00, 

Chl: -, Opa: 2.00, Amp: 0.00 
Quartz monzonite 

Qz: Quartz; Pl: Plagioclase; Alf: Alkali feldspar; Mos: Muscovite; Bio: Biotite; Amp: Amphibole; Chl: Chlorite; 

Kao: Kaolinite, Opa: Opaque minerals. 

 
Figure 3. Cerchar abrasiveness testing device 
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Rock No 11 Rock No 12 

  

Rock No 13 Rock No 14 

 

Rock No 15 

Figure 4. Thin sections are studied for petrographic analysis 

 

    Additionally, the thin sections were examined for the presence of opaque minerals, chlorite, 

amphibole, and muscovite, which are considered heavy and accessory minerals in the context 

of this study. The identification and characterization of these minerals provide valuable insights 

into the petrographic composition of the rocks. 

    Mineral contents have been quantified by calculating grains number from the thin section 

with the polarizing microscope. This method has the following steps: (1) taking images by 

digital microscopy, (2) image preparation, (3) extracting petrographic characteristics, and (4) 

performing regression analysis for precise investigation of petrographic and textural 

characteristics. Then, microscopic pictures of thin sections were considered by using Jmicro 

vision software v.1.27. The method of calculating the texture coefficient (TC) by JMicroVision 

V.1.27 software is shown in Figure 5. This software is open-source image processing and can 

quantifies (manually and automatically components) the common image processing operations. 

    One routine method to measure rock texture is using a texture coefficient (TC) technique, 

recommended by Howarth & Rowlands (1987). A number of scholars have applied TC to predict 

the geotechnical characteristics of rocks (e.g., Howarth & Rowlands, 1987; Ersoy & Waller, 

1995; Singh & Verma, 2012; Ozturk & Nasuf, 2013; Ozturk et al., 2014; Tumac et al., 2017; 

Rostami et al., 2020; Karrari et al., 2023). The textural coefficient is determined by Eq. (1): 
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Figure 5. The method of calculating the texture coefficient (TC) by JMicroVision V.1.27 software 

 

TC = AW × [(
N0

N1 + N0
)  ×  (

1

FF0
) +  (

N1

N1+N0
) ×  (AF1) × (AR1)]                                              (1) 

Where,  

TC: Textural coefficient  

AW: Grain packing density (Area weighting)  

N0: The number of grains with an aspect ratio is less than a pre-set discrimination level of 2.  

N1: The number of grains with an aspect ratio is greater than a pre-set discrimination level of 

2. 

FF0: Mathematics average of discriminated Form-Factors of all N0 grains        

AR1: Mathematics average of discriminated aspect ratios of N1 grains        

AF1: Angle Factor determining all N1 grains orientation 

    In this study, microscopic images of the thin sections were analyzed using Jmicro Vision 

software version 1.27. The software facilitated the examination and analysis of the grain 

boundaries of the various rock components. To ensure accurate results, the software utilized a 

background registration procedure. Once the grain boundaries were calibrated and digitized, 

several parameters were automatically computed, including the minimum Feret's diameter, 

area, perimeter, maximum Feret's diameter, and the orientation of the individual grains. Feret's 

diameter is defined as being the perpendicular distance between two parallel, outer tangents to 

an object. These parameters provide quantitative measurements and insights into the size, 

shape, and spatial arrangement of the grains within the thin sections, enhancing the 

understanding of the rock's textural characteristics. In the end step, TC was determined by using 

Eq. (1). At least 250 grains are considered in each thin section to calculate the TC.  

    Acidic igneous rocks normally have four main minerals, including plagioclase, quartz, K-

feldspar, and biotite, and accessory minerals (muscovite, Opaque) (Streckeisen, 1976). Various 

minerals usually have different grain sizes, which can be calculated with a heterogeneity index 

(H). The average grain size Ra is obtained as (Eq. (2)). The influence of material heterogeneity 

index is calculated as (Eq. 3) (Peng et al., 2017).  
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Ra = ∑ (wi ∗ rim
i=1 )                                                                                                                         (2) 

H = √∑ (
ri

Ra
− 1)2m

i=1                                                                                                                        (3) 

Where ri, Wi,  m are the mean grain size of various minerals (mm), volume percentage, and the 

number of different major and minor minerals, respectively.  

Grain size homogeneity Index (GI) is defined as a fabric factor, which explains the distribution 

of grain size in the rock (Eq. 4) (Karrari et al., 2023). 

GI = 
Ag avg

√∑ (Agi−Ag avg) ^2
                                                                                                                            (4) 

    Where Agi is the individual grain area and Agavg is the average area of the grains.  

    Saturation Index (SI) is defined as the ratio of quartz percentage (Qtz) to the sum of feldspars 

(Alf + Pl) and quartz percentage (Eq. 5) (Karrari et al., 2023). 

SI = 
Qtz%

(Alf+Pl+Qtz)%
                                                                                                                                   (5) 

    Feldspathic Index (FI) is defined as the percentage ratio of alkali-feldspars (Alf) to the sum 

of alkali-feldspars and plagioclase (Pl) percentage (Eq. 6) (Karrari et al., 2023). 

FI = 
Alf%

(Pl+Alf)%
                                                                                                                                          (6) 

    Colouration Index (CI) is denoted as the sum volume of the light minerals (alkali-feldspars, 

plagioclase, and quartz) minus colored and dark minerals (muscovite, chlorite, amphibole, 

biotite, and opaque minerals) percentages in rock (Eq. 7) (Karrari et al., 2023). 

CI = 100 – (Alf + Pl + Qtz) %                                                                                                          (7) 

    ABI (Abrasivity Index) is applied for estimating rock abrasiveness. ABI defined as multiple 

of two factors of Vickers hardness number of rock (VHNR) and UCS (Eq. 8) (Hassanpour et 

al., 2014; Hassanpour et al., 2019). 

ABI = VHNR × (UCS/100)                                                                                                                 (8) 

    VHNR and UCS are the weighted mean of Vickers hardness number of particular minerals 

and uniaxial compressive strength based on MPa unit, respectively. 

    Rock Abrasivity Index (RAI) is included two factors: equivalent quartz content (EQC) and 

UCS (Eq. 9) (Plinninger, 2002). 

RAI = UCS × EQC = ∑ UCS. mi. Rin
i=1                                                                                             (9) 

    Where EQC, mi, Ri, n, and UCS are the equivalent quartz content, the percentage of minerals, 

Rosiwal hardness that is estimated by using Rosiwal hardness of quartz, the total of major and 

minor minerals in a sample, uniaxial compressive strength, respectively. The Rosiwal hardness 

of each mineral is divided by the Rosiwal hardness of quartz, which quartz hardness is 

considered 100 percentage, and total other minerals' hardness will be compared to quartz. The 

Rosiwal hardness of the mineral will be modified for the ratio of each mineral in the rock 

sample, and the EQC of the rock will be calculated. In this study, Rosiwal hardness was 

determined according to Mohs hardness of the constituent minerals by using equation 10 

(Ghasemi, 2010): 

Rosiwal hardness = exp ((Mohs hardness-2.12)/1.05)                                                                   (10) 

    Schimazek's Sch value was specified through Schimazek & Knatz (1970) presented on 

Schimazek's pin-on-disc test mentioned by Verhoef (1997) (Eq. 11). 

Sch =
EQC∗ ɸ∗ BTS

100
                                                                                                                          (11) 

    Where, EQC is the equivalent quartz content (percentage), BTS is Brazilian tensile strength 

(MPa), and ɸ is the mean grain size of minerals (mm). 

 

Results  

 

Tables 4 and 5 present the results of petrographic and engineering features of 15 samples of 

acidic igneous rock. Textural parameters including the TC vary between 0.9 to 2.28, the H and 
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GI values range between 0.82 to 2.79, and 0.01 to 0.06, respectively. According to Ozturk & 

Nasuf classification (2013), TC values are high to very high. 

    Mineralogical indices, including the SI, FI, and CI values, ranges from 0.07 to 0.50, 0.32 to 

0.90, and 6.70 to 40.04, respectively. According to Streckeisen classification (1976), SI values 

are quartzite to Feldspars rocks, FI values are Plagioclase to almost Alkali-feldspars, and CI 

values are Leucocratic and Hololeucocratic. These indices showed that these igneous rocks are 

categorized as felsic rocks.  

    Physical characteristics including porosity and dry unit weight values are from 0.47 % to 

1.37 % and 26.00 kN/m3 to 28.06 kN/m3, respectively. Based on the Anon classification (1977), 

dry unit weight values vary from high to very high, and the porosity values vary from low to 

very low. Physical characteristics such as dry unit weight and porosity showed that these 

parameters depend on grain constituents, grain mineralogical, and rock texture (Roy, 2017). 

For example, the highest porosity is for rock number 4 that has the lowest TC, H, GI, SI, CI, 

CAI, ABI, and RAI. 

    The UCS test yielded results ranging from 40.56 MPa to 155.30 MPa, representing the 

compressive strength of the rock samples. On the other hand, the BTS test provided results 

ranging from 8.00 MPa to 18.81 MPa, indicating the tensile strength of the rock samples. IS50 

test results are in the range of 5.3 to 9.27 MPa, and Et values are from 23.43 MPa to 85.80 MPa. 

Based on the ISRM classification (2007), the UCS values vary from low to high. According to 

the Bieniawski classification (1975), the IS50 values vary from high to very high. Mechanical 

properties showed that these igneous rocks have high compressive and tensile strength.  

    The Sch values range from 1.21 to 5.06, representing the Schimazek abrasivity index. The 

CAI values range from 1.17 to 4.48, indicating the Cerchar Abrasivity Index. The ABI values 

range from 279.05 to 1334.5, representing the Abrasivity Index of Bituminous Coal. Lastly, the 

RAI values range from 4.35 to 95.79, indicating the Rock Abrasivity Index. According to the 

Plinninger classification (2010), the RAI values vary from non-abrasive to very abrasive rocks. 

Based on the Alber et al. (2014) classification, the CAI values are low to very high. Abrasivity 

indices showed that these igneous rocks have low to very high abrasiveness. 

    In this study, experimental investigations including textural parameters, mineralogical 

indices, physical properties, and mechanical properties showed that most samples have high 

TC, H, SI, CAI, ABI, and RAI values. To evaluate the relationships between CAI with 

petrographical, textural, and mechanical rock characteristics, statistical analyses were used. 

 
Table 4. Petrographic features of rock samples 

Textural parameters Mineralogical indices 

Rock 

No 

Area 

(mm2) 

Perimeter 

(mm) 

Min 

of Feret’s 

(mm) 

Max of 

Feret’s 

(mm) 

Size 

(mm) 
TC H GI SI FI CI 

1 0.10 1.39 0.25 0.44 0.28 1.76 2.37 0.05 0.21 0.60 10.86 

2 0.07 0.58 0.12 0.29 0.13 1.72 1.88 0.02 0.22 0.69 40.04 

3 0.30 2.41 0.53 0.77 0.56 1.51 1.70 0.04 0.18 0.85 12.16 

4 0.37 2.97 0.80 0.95 0.88 0.99 0.85 0.02 0.07 0.90 5.30 

5 0.04 0.99 0.18 0.29 0.15 2.03 2.79 0.06 0.19 0.60 29.96 

6 0.04 0.91 0.18 0.30 0.20 1.91 1.90 0.03 0.16 0.61 22.54 

7 0.20 1.10 0.40 0.69 0.25 1.40 1.36 0.03 0.14 0.82 16.11 

8 0.08 1.01 0.29 0.40 0.22 1.54 1.44 0.03 0.20 0.81 21.04 

9 0.18 1.82 0.37 0.59 0.30 1.82 2.37 0.04 0.34 0.70 15.93 

10 0.20 2.01 0.32 0.55 0.42 1.78 1.99 0.06 0.31 0.60 26.63 

11 0.07 0.88 0.17 0.28 0.29 1.71 1.69 0.01 0.27 0.78 11.98 

12 0.06 0.96 0.19 0.31 0.20 1.80 1.66 0.02 0.23 0.76 28.98 

13 0.15 1.61 0.31 0.50 0.40 2.28 2.25 0.03 0.50 0.32 6.70 

14 0.10 1.40 0.20 0.60 0.40 2.15 2.30 0.05 0.43 0.60 6.70 

15 0.35 2.90 0.75 0.90 0.83 0.90 0.82 0.02 0.09 0.88 12.60 
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Table 5. Engineering features of rock samples 
Physical characteristics Mechanical characteristics Abrasivity indices  

Rock No 

Dry unit 

weight 

(KN/m3)  

Porosity 

(%) 

UCS 

(MPa) 

BTS 

(MPa) 

IS50 

(MPa) 

Et 

(MPa) 
Sch 

CAI 

(mm/10) 
ABI RAI 

1 25.89 1.23 115.80 16.45 7.93 44.82 3.06 3.10 860.21 62.13 

2 27.86 0.47 127.35 18.18 8.92 59.03 3.08 2.59 655.24 42.07 

3 26.09 0.76 118.98 16.52 5.76 49.22 1.33 2.76 807.04 56.19 

4 26.09 1.37 40.56 8.31 5.83 23.43 5.06 1.17 279.05 18.89 

5 26.68 0.64 128.66 12.22 6.84 30.71 3.39 3.19 773.60 54.08 

6 26.88 0.60 149.13 18.35 8.85 39.65 1.21 2.86 965.40 66.64 

7 28.05 1.026 71.78 7.33 5.50 76.41 1.96 2.21 443.82 30.33 

8 27.86 1.256 59.49 10.76 5.04 45.35 1.68 2.37 365.53 35.11 

9 27.27 0.615 97.24 12.50 9.27 27.34 1.62 3.48 706.24 53.52 

10 26.29 0.749 107.06 12.81 6.57 40.60 3.30 3.06 745.78 50.95 

11 26.38 0.608 115.86 14.03 6.57 47.65 2.84 2.88 863.56 64.83 

12 26.88 0.346 125.51 14.43 7.92 44.94 1.76 2.27 942.04 53.25 

13 26.48 0.800 155.30 18.81 8.92 85.80 4.90 4.48 1334.5 95.79 

14 25.99 0.850 120.50 15.75 5.30 45.65 3.03 4.00 1012.4 60.59 

15 26.29 1.300 45.34 8.00 5.50 24.50 5.00 1.30 340.45 4.35 

 

Statistical analysis 

 

In this research, statistical analyses were conducted to explore the relationships between the 

CAI, petrographic and textural features, and engineering properties of the acidic igneous rocks.  

Various statistical methods, including linear and nonlinear regression analysis and bivariate 

correlation, were employed to assess the potential correlations between these variables. The 

statistical results obtained from these analyses were thoroughly investigated and evaluated. The 

goal was to identify and select the most suitable models that effectively capture the relationships 

between CAI, petrographic and textural features, and engineering properties. This approach 

allowed for a comprehensive understanding of the factors influencing the rock's abrasiveness 

and provided valuable insights for engineering and construction applications. 

 

Pearson's correlation coefficient 

 

Pearson's correlation coefficient (R) was applied to study the efficiency and significant 

correlation between CAI with petrographical, textural, and engineering features (Eq. 12). 

Rxy = COV x, y / SDx. SDy                                                                                                    (12) 

    Where the Pearson's correlation (Rx,y) between the covariance values (COVx,y) divided by their 

standard deviations (SDx and SDy) is determined, in Table 6, Pearson's correlation coefficients, 

the CAI, petrographic features, and engineering characteristics are revealed. Significance of 

regression was calculated using hypothesis test (P-value) proposed by Johnson (1998). The P-

value less than 0.05 shows that it is statistically significant at a 95 % confidence level. Many 

researchers used this method to evaluate their results (e.g., Khaleghi Esfahani et al., 2019; Torrijo 

Garzón-Roca, 2020; Karrari et al., 2023). There is a significant relationship between CAI and 

engineering features, including P values of TC, H, SI, FI, BTS, UCS, ABI, and RAI are lower 

than 0.05 (Table 6). The best correlation is between CAI and TC (R = 0.929). It shows that rock 

texture is an impressive factor for rock abrasivity in felsic igneous rocks. Also, CAI and SI have 

a high correlation (R = 0.895), display that the mineralogy (quartz content) is an effective factor 

to estimate rock abrasivity in felsic igneous rocks. Relationships between CAI with textural 

indices (TC, H) and petrographical indices (SI, FI) indicate rock texture and mineralogical 

parameters are effective parameters for estimating CAI. Aligholi et al. (2018) reported fabric and 

mineralogical properties are significantly effective for predicting engineering features.  
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Table 6. Pearson's correlation coefficients and significant level 
Properties 

correlation 

Textural 

indices 

Mineralogical 

indices 

Physical 

characteris

tics 

Mechanical 

characteristics 

Abrasivity indices 

Pearson's 

correlation 

TC H SI FI P (%) UCS 

(MPa) 

BTS 

(MPa) 

IS50 

(MPa) 

Sch ABI RAI 

CAI (R) 0.929 0.850 0.895 -0.845 - 0.435 0.771 0.681 0.420 - 0.445 0.863 0.888 

P value 0.000 0.000 0.006 0.000 0.053 0.001 0.005 0.119 0.116 0.000 0.000 

R: P-value: Significance level (0.05), Pearson's correlation coefficients, CAI: Cerchar abrasion index, TC: texture 

coefficient, H: heterogeneity index, SI: Saturation Index, FI: Feldspathic Index, P: porosity, UCS: uniaxial 

compressive strength, BTS: Brazilian tensile strength, IS50: point load index, Sch: Schimazek F value, ABI: 

abrasion index, RAI: rock abrasiveness index. *significant at 95% confidence level 

 

    Increasing the CAI is linked to several changes in the petrographical and engineering 

characteristics of acidic igneous rocks. Petrographical features such as Texture Coefficient 

(TC), Heterogeneity (H), and Saturation Index (SI) show an increase as CAI values rise. 

Similarly, engineering properties like Uniaxial Compressive Strength (UCS), Abrasivity Index 

(ABI), and Rock Abrasivity Index (RAI) also increase with higher CAI values. However, there 

is a negative correlation (-0.845) between CAI and the content of alkali-feldspars (FI), 

indicating a decrease in FI as CAI increases. 

    The correlation analysis in this study revealed that the weakest correlation (R = 0.420) was 

observed between the IS50 and CAI. The significance level (p-value) for this correlation was 

found to be less than 0.05, indicating poor significance. This weaker correlation might be 

attributed to the mechanism of the point load test. Additionally, an inverse correlation (R=-

0.435) was identified between porosity and CAI. This indicates that as the CAI value increases, 

the porosity tends to decrease. Also, Abu Bakar et al. (2016) and Rostami et al. (2020) described 

an inverse correlation between CAI and porosity. The inverse relationship between porosity 

and CAI may be due to low strength, and hardness of rock samples.  

    The inverse correlation between the Feldspathic Index (FI) and Cerchar Abrasivity Index 

(CAI) can be attributed to the lower hardness of feldspathic grains compared to quartz. With a 

hardness of 6-6.5 on Moh's scale, feldspar grains are softer than quartz (hardness of 7). On the 

other hand, the CAI shows a positive relationship with the Abrasivity Index (ABI), Rock 

Abrasivity Index (RAI), grain hardness, and rock strength. As these factors increase, so does 

the CAI, indicating a higher level of abrasiveness. Thus, grain hardness and rock strength play 

a significant role in determining the CAI and the overall abrasiveness of rocks. Majeed & Abu 

Bakar (2015) reported a logarithmic relationship between RAI and CAI. Their research showed 

that rock strength and hardness increased with increasing CAI. 

 

Simple regression analysis 

 

In the following, relations between CAI and engineering features have been examined. While 

the relation between the dependent and independent variables is not essentially linear, the non-

linear (curve) estimation must be applied (Norusis, 2002). In linear and non-linear regression 

analysis, the good curve estimations such as 6 models: linear (y = a1. CAI + c), inverse (y = (a1 

/ CAI) + c), logarithmic (y = (a1. Ln (CAI) + c), quadratic (y = (a1. CAI) + (a2. CAI2) + c), 

exponential (y = (exp (a1.CAI)). c), and power (y = CAI a1. c). Y is the dependent variable, c is 

a constant value, a1 and a2 are regression coefficients. 

    The efficiency of the statistical analysis were evaluated by normal statistical techniques, such 

as the coefficient of determination (R2), adjusted R2 (Adj R2), analysis of variance (ANOVA), 

and standard error (Std. Er). The R2 and Adj R2 applied to assess regression models' validity. 

Higher R2 (R2=1) values show more accurate relationships in linear regression. While R2 is a 
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well statistical factor, only a greater value of R2 is not suitable for comparing between 2 

regression models (Omar, 2016). Consequently, two error methods were used for evaluating 

relationships. The Mean absolute percentage error (MAPE) and root means square error 

(RMSE) for assessing each model is determined by Eqs. 13 and 14, respectively. The MAPE 

percentage for the assessment models shows in Table 7. 

MAPE = 
∑ |

𝑌𝑖−𝑋𝑖
𝑌𝑡

|𝑛
𝑖=1

𝑛
× 100                                                                                                        (13) 

RMSE = √
1

𝑛
∑ (𝑌𝑖 − 𝑋𝑖)𝑛

𝑖=1 ^2                                                                                                  (14) 

    Where Yi is the measured value, Xi is the predicted value, and n is a number of samples. If 

R2 =1, MAPE < 10%, and RMSE = 0, the suggested model would be excellent. 

    Simple regression analyses were conducted between petrographic, textural, mechanical 

characteristics, and CAI for determining these properties. Table 8 shows the best models for 

engineering features. The best regression analysis between CAI and examined engineering 

features (TC, H, SI, UCS, ABI, and RAI) was the power model (Table 8). 

    Textural properties (TC and H) displayed that a good correlation between CAI, TC, and H 

(Table 8). The correlation between CAI, and petrographical, mechanical, and abrasivity 

characteristics is indicated in Figure 6. Statistical analyses show that CAI has a better 

correlation with TC (R2 = 0.898, RMSE = 0.562, MAPE = 12.697) than H (R2 = 0.862, RMSE 

= 0.485, MAPE = 10.677). As previously, mentioned, TC encompasses grain size, grain 

direction, and grain packing. H include different grain sizes minerals (grain size and volume 

fraction). So, TC encompasses more parameters of rock texture than H. Neither TC nor H do 

not represent the composition and mineralogy of grains.  

    Petrographical indices (SI, FI) showed the percentage and type of minerals. The good 

correlation between petrographical indices is SI (R2 = 0.837, RMSE = 0.364, MAPE = 12.017). 

The saturation index is better than the feldspathic index for comparing CAI because it includes 

quartz content, and feldspathic minerals have low abrasiveness specific. Undul & Er (2017) 

indicated increasing feldspar, plagioclase, and opaque minerals due to a reduction in CAI 

values. Er & Tugrul (2016) mentioned that the quartz content of the granitic rocks increased 

CAI. Aligholi et al. (2018) showed a direct relation between CAI, SI, and FI with correlation 

coefficients (R= 0.80 and R= 0.69), respectively. 

 
Table 7. Evaluation of models MAPE percentage (McKenzie 2011; Leys et al. 2013) 

 

MAPE (%) Evaluation 

MAPE < 10% excellent 

10% < MAPE < 20% good 

20% < MAPE < 50% reasonable 

MAPE > 50% poor 

 

Table 8. The best simple regression analyses between CAI and engineering features 
Number 

equation 
Equation R R2 

Adjusted 

R2 

Standar

d error 
F Sig RMSE MAPE 

15 CAI = 1.363 TC 1.328 0.948 0.898 0.890 0.120 114.292 0.000 0.562 12.697 

16 CAI = 1.562 H 0.948  0.929 0.862 0.852 0.140 81.376 0.000 0.485 10.677 

17 CAI = 7.020 SI 0.627 0.915 0.837 0.824 0.152 66.554 0.000 0.364 12.017 

18 CAI = 4.768 - 0.007 FI - 
3.867 FI 2 

0.874 0.763 0.724 0.459 19.345 0.000 0.433 15.335 

19 CAI = 0.089 UCS 0.738 0.851 0.725 0.703 0.198 34.193 0.000 0.645 16.927 

20 CAI = 0.291 BTS 0.857 0.730 0.533 0.497 0.257 14.830 0.002 0.621 21.959 

21 CAI = 0.028 ABI  0.700 0.868 0.753 0.734 0.187 39.665 0.000 0.518 15.028 

22 CAI = 0.547 RAI  0.419 0.850 0.722 0.700 0.199 33.732 0.000 0.507 16.387 
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Figure 6. The correlation between CAI, petrographical, mechanical, and abrasivity characteristics 

 

    Mechanical characteristics revealed that a reasonable correlation exists between CAI and UCS with 

a 0.725 coefficient of determination and 0.645 and 16.927 RMSE and MAPE (Table 8, Eq. 19). 

Because rock compressive strength is resistance to indentation pin to rock performed test. Similar 

relations between CAI and UCS were presented in other studies (Ko et al., 2016; Rostami et al., 2020).  

    Abrasiveness characteristics showed that the good correlations between CAI, ABI, and RAI 

y = 1.363x1.328

R² = 0.898

0.00

1.00

2.00

3.00

4.00

5.00

0.00 1.00 2.00 3.00

C
A

I

TC

Eq.15

y = 1.562x0.948

R² = 0.862

0.00

1.00

2.00

3.00

4.00

5.00

0 1 2 3

C
A

I

H

Eq.16

y = 7.020x0.627

R² = 0.837

0.00

1.00

2.00

3.00

4.00

5.00

0 0.2 0.4 0.6

C
A

I

SI

Eq.17

y = -3.867x2 - 0.007x + 4.768

R² = 0.763

0.00

1.00

2.00

3.00

4.00

5.00

0 0.25 0.5 0.75 1

C
A

I

FI

Eq.18

y = 0.089x0.738

R² = 0.725

0.00

1.00

2.00

3.00

4.00

5.00

0 50 100 150 200

C
A

I

UCS

Eq.19

y = 0.291x0.857

R² = 0.533

0.00

1.00

2.00

3.00

4.00

5.00

0 10 20 30

C
A

I

BTS

Eq.20

y = 0.028x0.70

R² = 0.753

0.00

1.00

2.00

3.00

4.00

5.00

0.0 500.0 1000.0 1500.0

C
A

I

ABI

Eq.21

y = 0.547x0.4191
R² = 0.722

0.00

1.00

2.00

3.00

4.00

5.00

0 50 100 150

C
A

I

RAI

Eq.22



444  Karrari et al. 

with R2= 0.753, RMSE = 0.518, MAPE = 15.028 and R2= 0.722, RMSE = 0.507, MAPE = 

16.387 were presented in Table 8 (Eq. 21 and 22), respectively. ABI has two good statistical 

parameters and has a lower MAPE and higher R2 in comparison with RAI. Considering, ABI 

composing of Vickers hardness was showed more effective than RAI that composing of 

equivalent quartz content. Vickers hardness has the cubic indentation to rock penetration. 

However, EQC has been calculated from Rosiwal hardness that this quantified by Moh's 

hardness scale. Moh's hardness scale indicated relative hardness and did not determine a precise 

hardness value. Majeed & Abu Bakar (2015) reported a logarithmic relationship between RAI 

and CAI with coefficient determination from 0.43 to 0.53.  

    The initial analysis indicated that mechanical characteristics and abrasivity indices have the 

potential to be utilized for estimating the Cerchar Abrasivity Index (CAI). To improve the 

accuracy of the predictions, further analysis was conducted using multiple linear and non-linear 

regression techniques, aiming to enhance the R2 value. 

 

Multiple Linear Regression (MLR) and Non-Linear Regression (MNLR) 
 

The multiple linear and non-linear regression analyses were applied to acquire the best-fit empirical 

relations. In this research, statistical analyses were conducted by two and three independent 

variables with the status that one of the independent variables was a CAI. Consequently, Eqs. 23 

and 24 are presented to estimate CAI based on geomechanical characteristics. 

CAI = α0 + α1. X1 + … + an. Xn                                                                                               (23) 

CAI = α0 + α1. X1 α2 +…+ αn. Xn αn                                                                                             (24) 

    Where CAI, X1, and Xn are the geomechanical characteristics, α0 is a constant, α1, α2, and αn 

are the regression coefficients of X1, and Xn respectively. The power multiple non-linear 

regression analyses were applied to determine the empirical relations. Since this equation in 

preliminary examination indicated a good R2, RMSE, and MAPE. Unique evaluation multiple 

linear equations were presented in Table 9 (Eqs. 25 to 36). In this table, the correlation 

coefficient (R2), adjusted correlation (R2), standard error, the significance values, F statistics, 

MAPE, and RMSE values were applied to assess and quantify the presented models' accuracy. 

In addition, for easy understanding, the MLR models are shown the number equations (Eqs. 25 

to 36) against R2, RMSE, and MAPE in Figure 7. 
 

Table 9. Results of multiple linear regression analysis between TC, H, ABI, RAI, SI, FI and CAI 
Number 

equation 
Equation R R2 

Adjusted 

R2 

Standard 

error 
F sig RMSE MAPE 

25 
CAI = - 0.250 + 3.108 SI 

+ 1.360 TC 
0.963 0.927 0.915 0.254 76.630 0.000 0.320 8.190 

26 
CAI = 1.032 - 1.451 FI + 

1.638 TC 
0.939 0.881 0.861 0.325 44.335 0.000 0.454 11.177 

27 
CAI = - 0.187 + 1.225 TC 

+ 0.001 UCS + 3.230 SI 
0.963 0.928 0.908 0.264 47.222 0.000 0.321 8.147 

28 
CAI = 0.946 + 1.953 TC - 

0.004 UCS - 1.482 FI 
0.942 0.887 0.857 0.330 28.856 0.000 0.454 11.485 

29 
CAI = 0.376 + 4.405 SI + 

0.746 H 
0.969 0.940 0.930 0.231 93.337 0.000 0.219 7.045 

30 
CAI = 3.528 - 2.952 FI + 

0.723 H 
0.915 0.836 0.809 0.381 30.658 0.000 0.363 12.290 

31 
CAI = 3.195 + 0.654 H + 

0.003 UCS - 2.687 FI 
0.917 0.840 0.797 0.393 19.292 0.000 0.367 12.663 

32 
CAI = 0.302 + 0.588 H + 

0.004 UCS + 4.187 SI 
0.975 0.950 0.937 0.219 69.913 0.000 0.213 6.386 

33 
CAI = - 0.549 + 0.001 

ABI + 1.655 TC 
0.937 0.879 0.859 0.328 43.526 0.000 0.487 11.475 

34 
CAI = 0.318 + 0.001 ABI 

+ 0.614 H + 3.497 SI 
0.981 0.962 0.952 0.191 93.721 0.000 0.282 9.556 

35 
CAI = - 0.405 + 0.012 

RAI + 1.545 TC 
0.938 0.881 0.861 0.325 44.268 0.000 0.498 11.923 

36 
CAI = 0.399 + 0.011 RAI 

+ 0.562 H + 3.442 SI 
0.979 0.958 0.947 0.200 84.476 0.000 0.195 6.094 
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Figure 7. The number equations (Eqs. 25 to 36) against R2, RMSE, and MAPE in MLR models 

 

    The MLR and MNLR models were used at a significance level of 0.95. The verification of 

presented equations between TC, H, SI, FI, UCS, ABI, and RAI, is used to estimate CAI. In 

addition, the variance analysis technique is applied for investigating the significance of regression 

in multiple linear and non-linear regressions. The results displayed that amid totally the multiple 

linear regression analyzed parameters H, ABI, and SI showed the best fit with CAI (R2 = 0.962, 

RMSE = 0.282, MAPE = 9.556) (Eq. 34, Table 8). This equation has an excellent relationship 

because it has the highest R2 and lowest RMSE and MAPE (Eq. 34). Results showed that the 

good multiple linear regression analyzed parameters RAI, H, and SI showed the best fit with CAI 

(R2 = 0.958, RMSE = 0.195, MAPE = 6.094) (Eq. 36, Table 8). These equations (Eqs. 34 and 36) 

revealed the influence of mineralogical properties (SI), textural properties (H), hardness, and rock 

strength (ABI) on CAI. The comparison between two equations, 29 and 30, revealed a significant 

relation. The H has better relation with SI rather than FI for estimating CAI, respectively (R2 = 

0.940, RMSE = 0.219, MAPE = 7.045 and R2 = 0.836, RMSE = 0.363, MAPE = 12.290). Also, 

comparison between two equations 25 and 26 indicated that the TC have better relation with SI 

(R2 = 0.927, RMSE = 0.320, MAPE = 8.190) rather than FI (R2 = 0.881, RMSE = 0.454, MAPE 

= 11.177) for estimating CAI. The reason may be related to the content of quartz with different 

sizes. Because by increasing quartz, heterogeneity, and CAI increases. Also, the relation between 

TC and FI may be connected to alkali feldspar subhedral grain shape, and TC is affected from 

N0, N1, and FF0 (Eq. 1). The comparison between two equations 25 and 29 showed that the H has 

better relation with SI rather than TC with SI for estimating CAI, respectively (R2 = 0.927, RMSE 

= 0.320, MAPE = 8.190 and R2 = 0.940, RMSE = 0.219, MAPE = 7.045). The different minerals 

sizes (H) are more effective than TC on CAI. When pin is scratched on rock samples, various 

minerals size and quartz content may cause increasing CAI value. The comparison of three 

equations 32, 34, and 36 indicated that the rock strength is more effective than hardness. Also, 

ABI is more effective than RAI.   

    Table 10 indicates the multiple non-linear regression relations (Eqs. 37 to 48). Additionally, 

for easy understanding, the MNLR models showed the number equations (Eqs. 37 to 48) against 

R2, RMSE, and MAPE in Figure 8. In this Table, the results of multiple nonlinear regression 

analyses between TC, H, ABI, RAI, SI, FI, and CAI are presented. Amid totally the multiple 

non-linear regression analyzed parameters, ABI, H, and SI displayed the best fit with CAI (R2 

= 0.972, RMSE = 0.148, MAPE = 5.039 (Table 10, Eq. 46). Results displayed that the good 

25 26 27 28 29 30 31 32 33 34 35 36
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R2 0.927 0.881 0.928 0.887 0.94 0.836 0.84 0.95 0.879 0.962 0.881 0.958
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multiple non-linear regression analyzed parameters UCS, H, and SI showed the best fit with 

CAI (R2 = 0.970, RMSE = 0.151, MAPE = 5.068) (Table 10, Eq. 44). These relationships (Eqs. 

46 and 44) have the highest R2 and lowest RMSE and MAPE. 

    Analysis of the relationships revealed that the relationship between H and the independent 

variables (CAI, UCS, FI, SI) is better than TC. As previously mentioned, the H parameter is 

more efficient than TC. The assessment between two equations, 41 and 43, displayed that the 

R2, RMSE, and MAPE are approximately similar. Equation 43 has 3 independent variables 

(UCS, H, and FI), but Equation 41 has 2 independent variables (H and FI). These relations 

revealed that the UCS does not have a significant influence on CAI. So, textural and 

mineralogical properties are more effective than rock strength.  

    Generally, these relationships are based on higher R2 and lower RMSE and MAPE. They 

showed that nonlinear equations (Table 10) had relatively better results than linear equations 

(Table 9).  

 

 
Figure 8. The number equations (Eqs. 37 to 48) against R2, RMSE, and MAPE in MNLR models 

 

Table 10. Results of multiple nonlinear regression analysis between TC, H, ABI, RAI, SI, FI and CAI 
Number 

equation 
Equation R R2 

Adjusted 

R2 

Standard 

error 
F sig RMSE MAPE 

37 
CAI = - 8.758 + 10.136 

TC 0.2 + 5.898 SI 2.177 
0.964 0.931 0.923 0.274 128.554 0.000 0.280 7.868 

38 
CAI = - 4.363 + 5.438 

TC 0.4 + 0.262 FI -1.398 
0.942 0.888 0.876 0.144 76.468 0.000 0.411 10.707 

39 

CAI = -81.849 + 8.439 

TC 0.2 + 73.977 UCS 
0.003 + 5.918 SI 2.102  

0.965 0.933 0.926 0.100 169.677 0.000 0.262 7.416 

40 

CAI = - 2.842 + 6.217 

TC 0.4 - 1.559 UCS 0.1 + 

0.259 FI -1.391 

0.943 0.891 0.878 0.149 69.987 0.000 0.419 11.276 

41 
CAI = - 16.418 + 18.016 

H 0.1 + 0.015 FI -3.962 
0.947 0.898 0.889 0.296 108.645 0.000 0.277 7.105 

42 
CAI = - 13.971 + 15.577 

H 0.1 + 14.209 SI 3.171 
0.983 0.968 0.964 0.076 303.767 0.000 0.290 7.693 

43 

CAI = - 16.415 + 18.120 

H 0.1 - 0.072 UCS 0.1 + 

0.015 FI -3.969 

0.947 0.898 0.889 0.296 108.840 0.000 0.276 7.080 

 

37 38 39 40 41 42 43 44 45 46 47 48

RMSE 0.28 0.411 0.262 0.419 0.277 0.29 0.276 0.151 0.523 0.148 0.522 0.152

MAPE 7.868 10.707 7.416 11.276 7.105 7.693 7.08 5.068 11.888 5.039 11.901 5.152
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    These equations showed that the model fits the data well and can estimate CAI, 

petrographical indices (SI and FI), and textural features (TC and H), abrasiveness properties 

(ABI and RAI) with acceptable accuracy. 

 

Artificial Neural Network (ANN) 

 

The artificial neural network (ANN) is a statically model based on the configuration and 

functions of biological neural networks. The ANN modeling instrument is applied for 

establishing relations between inputs and outputs non-linear and intricate (Mishra et al., 2015). 

The ANN model applied for this research is a multi-layer perceptron (MLP) (Fig. 9a, b). The 

configuration of ANN models contains 2 and 3 inputs, 5 and 7 neurons in the hidden layer, and 

one output (Fig. 9a, b). Hecht-Nielsen (1987) suggested the number of hidden layers for ANN 

model, applied in this study, is ≤ 2 (inputs) + 1. The ANN model was made through Matlab 

software version R2016a. 

    The artificial neural network (ANN) model used in this study was trained through repeated 

exposure to input and output data. The goal of the training process was to minimize the error 

between the model's output and the experimental output. To achieve this, the Levenberg-

Marquardt algorithm, which is a second-order algorithm known for its efficiency in training 

medium-sized feedforward ANN models, was employed. This algorithm is a type of 

backpropagation neural network architecture that utilizes the gradient descent error 

optimization method (Ticknor, 2013).  

    In this research, the percentage for training and test ANN analysis is 85% and 15%, 

respectively. The input variables (TC, H, SI, FI, UCS, ABI, and RAI) were used to estimate 

CAI. The ANN models were offered in Table 11 (Models. 49 to 60). For easy understanding, 

the MNLR models showed the number equations (Eqs. 49 to 60) against R2, RMSE, and MAPE 

in Figure 10. The best ANN model analysis was obtained between ABI, CAI, TC, and, SI (R2 

= 0.974, RMSE = 0.137, MAPE = 4.610) (Table 11; Model. 58). The good ANN model 

presented between CAI, and H, UCS, and SI (R2 = 0.973, RMSE = 0.131, MAPE = 4.678) 

(Table 11; Model. 56). ANN results show high accuracy for estimating CAI. ANN model 

analyses have higher R, R2, adjusted R2, and F statistics in comparison with The MLR and 

MNLR analysis. Also, the results displayed a reduction in the RMSE and MAPE values 

between the ANN analyses in comparison with MLR and MNLR analyses. Overall, ANN 

outperformed the MLLR and MLR models.  

 

 
a 

 
b 

Figure 9. General scheme of ANN models structure. a) The architecture of model includes 2 inputs, 5 

hidden layers, one input. b) The architecture of model includes 3 inputs, 7 hidden layers, and one output 
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Table 11. Results of ANN analysis between dependent and independent variables 

Number 

model 

Dependent 

variables 

Independent 

variables 
R R2 

Adjusted 

R2 

Standard 

error 
F sig RMSE MAPE  

49 CAI  TC, SI 0.969 0.940 0.935 0.068 200.69 0.000 0.224 5.755 

50 CAI  TC, FI 0.957 0.915 0.909 0.081 140.02 0.000 0.096 4.631 

51 CAI  TC, UCS, SI 0.972 0.945 0.940 0.065 221.82 0.000 0.213 6.386 

52 CAI  TC, UCS, FI 0.963 0.928 0.922 0.074 167.41 0.000 0.243 7.677 

53 CAI  H, SI 0.985 0.970 0.968 0.048 423.50 0.000 0.156 4.578 

54 CAI H, FI 0.964 0.930 0.924 0.073 172.25 0.000 0.240 5.554 

55 CAI H, UCS, FI 0.954 0.910 0.903 0.083 131.37 0.000 0.272 7.545 

56 CAI  H, UCS, SI 0.986 0.973 0.972 0.040 609.70 0.000 0.131 4.678 

57 CAI  ABI, TC 0.953 0.908 0.901 0.084 128.26 0.000 0.275 8.527 

58 CAI  ABI, SI, H 0.987 0.974 0.971 0.039 494.37 0.000 0.137 4.610 

59 CAI RAI, TC 0.957 0.915 0.909 0.081 140.53 0.000 0.264 6.481 

60 CAI RAI, SI, H 0.985 0.970 0.968 0.048 426.40 0.000 0.156 4.311 

 

 
Figure 10. The number equations (Eqs. 37 to 48) against R2, RMSE, and MAPE in MNLR models 

 

Discussion 
 

The results show that increasing the CAI is related to the petrographical and engineering 

characteristics of acidic igneous rocks. Petrographical features such as TC, H, and SI show an 

increase in CAI values. The CAI and SI have a high correlation coefficient (R = 0.895). Aligholi 

et al. (2018) described mineralogical and fabric properties are significantly effective for 

predicting engineering features. He showed a direct relation between CAI and SI with a 

correlation coefficient equal to 0.80. SI displays that the quartz content is an effective factor in 

estimating rock abrasivity in felsic igneous rocks. SI is better than FI for comparing CAI because 

it includes quartz content, and feldspathic minerals have low abrasiveness specific. Undul & Er 

(2017) showed increasing feldspar, plagioclase, and opaque minerals due to a decrease in CAI 

values. Er &Tugrul (2016) stated that the quartz content of the granitic rocks increased CAI.  

    Additionally, an inverse correlation was identified between CAI and porosity. This shows 

that as the CAI value increases, the porosity tends to decrease. Abu Bakar et al. (2016) and 

Rostami et al. (2020) defined an inverse correlation between CAI and porosity. 

    A reasonable correlation exists between CAI and UCS with a 0.725 coefficient of 
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determination. 

    Er &Tugrul (2016), Undul &Er (2017), Ko et al. (2016), and Rostami et al. (2020) showed 

that the CAI of magmatic rocks with UCS increased.  

    In multiple linear and non-linear regression and ANN analysis CAI, ABI, H, and SI revealed 

the highest correlation (Table 9, Eq.34; Table 10, Eq.46; Table 11, Eq.58). The results of the 

analysis indicate that SI, H, and ABI are suitable parameters for comparing the abrasiveness of 

acidic igneous rocks. These parameters include quartz content, rock texture, strength, and 

hardness which affect CAI. Aligholi et al. (2018) presented a multiple linear regression analysis 

between CAI and petrographic features (such as size and shape descriptors, fabric and 

mineralogical indices) with a coefficient of determination equal to 0.87 which is not considered 

rock strength and hardness. Also, this model has more parameters for calculating.  

 

Conclusions 

 

In this research, the relation between CAI and engineering features was evaluated for 15 

samples of 5 types of acidic igneous rocks extracted from the Gelas water transfer tunnel in 

west Azerbaijan (Naghadeh City) of Iran. Statically analysis, such as Pearson's correlation, 

simple and multiple linear and non-linear regression analysis has been performed to assess the 

relations between CAI and each engineering feature including texture coefficient (TC), 

heterogeneity (H), Saturation Index (SI), Feldspathic Index (FI), Uniaxial Compressive 

Strength (UCS), Abrasivity Index (ABI), and Rock Abrasivity Index (RAI). Based on Pearson's 

correlation analysis, the lowest correlation was between CAI and Sch, IS50, and P in igneous 

rocks. The Uniaxial Compressive Strength (UCS) is the only mechanical property that shows a 

significant correlation with the Cerchar Abrasivity Index (CAI). As the CAI value increases, 

various engineering features including Texture Coefficient (TC), Heterogeneity (H), Saturation 

Index (SI), UCS, Abrasivity Index (ABI), and Rock Abrasivity Index (RAI) also increase. 

However, the Feldspathic Index (FI) and porosity (P) show a decreasing trend as the CAI value 

increases. CAI and TC have the best correlation in simple regression analysis (Table 8; Eq.15). 

In multiple linear regression analysis CAI, ABI, H, and SI revealed the highest correlation 

(Table 9; Eq.34). In multiple non-linear regression analysis CAI, ABI, H, and SI showed the 

highest correlation (Table 10; Eq.46). In ANN analysis CAI, ABI, H, and, SI are the best models 

(Table 11; Eq.58). The results of the analysis indicate that the Saturation Index (SI), 

Heterogeneity (H), and Abrasivity Index (ABI) are suitable parameters for comparing the 

abrasiveness of acidic igneous rocks. The study suggests that H is a better indicator than Texture 

Coefficient (TC), and the saturation index is more effective than the feldspathic index for 

comparing the Cerchar Abrasivity Index (CAI). These findings can be applied in predicting the 

wear of disc cutters used in Tunnel Boring Machines (TBMs) for this specific project involving 

acidic igneous rocks. However, it should be noted that the dataset used in this study was limited 

to acidic igneous rocks, and further validation is recommended for other rock types. The 

presented equations can serve as a starting point for future research in this field. 
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