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Abstract

Cerchar Abrasivity Index (CAI) test is commonly used to assess the abrasiveness of rocks due to its
efficiency and simplicity. This research focuses on estimating CAIl values based on the petrographical,
textural, and mechanical characteristics of igneous rock. The study examines the potential correlation
between CAI values, petrographical, and textural characteristics using a dataset comprising 15 samples
from 5 different types of igneous rocks. The researchers employed a range of statistical analyses,
including Pearson's correlations, Simple and Multiple linear and non-linear regression, and artificial
neural network (ANN) analyses. These methods were used to examine the relationship between CAI
values and various parameters. CAl has a direct correlation with Texture Coefficient (TC),
Heterogeneity (H), Saturation Index (SI), Uniaxial Compressive Strength (UCS), Abrasivity Index
(ABI), and Rock Abrasivity Index (RAI), with the exception of Feldspathic Index (FI) and Porosity (P).
Results showed that by increasing CAl values, the TC, H, RAI, ABI, and Sl increased, and FI decreased.
By increasing TC and H, the percentage of quartz increases, and alkali feldspar decreases. The study
suggests SI, FI, TC, and H are appropriate in assessing the abrasiveness of igneous rocks. Validation of
the results displayed that new models can be used for predicting CAl with acceptable accuracy.

Keywords: Cerchar Abrasivity Index, Petrographic Characteristics, Textural Coefficient,
Heterogeneity, Igneous Rocks.

Introduction

In construction and mining projects, rock excavation can be carried out using traditional drilling
and blasting methods or mechanical excavators. However, one challenge encountered during
the excavation process is the varying strength and geomechanical properties of the rock
surfaces, which significantly reduces the effectiveness of cutting tools. As a result, a significant
portion of the excavation budget needs to be allocated towards repairing or replacing these rock
cutting tools (Hamzaban et al. 2014; Lin et al. 2020). Sliding on the rock surface can cause
degradation of the cutting tools used in excavation. The abrasiveness of the rock is influenced
by various features, including the average quartz grain size, quartz, and abrasive mineral
content, type of cement present, and degree of cementation (Yarali et al., 2008). These factors
play a role in determining the rock's abrasiveness and can contribute to the wear and
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deterioration of cutting tools during the excavation process.

Methods for determining the abrasiveness of rocks can be classified into two categories:
petrological and mechanical tests. (West, 1981). Petrological tests involve examining the mineral
composition, grain size, texture, and cementation of the rock. Mechanical tests, on the other hand,
focus on assessing the physical and mechanical properties that influence abrasiveness. In recent
decades mechanical tests such as the LCPC test, NTNU test, the Cerchar test, Cerchar hardness
index (CHI), and petrological parameters including rock abrasiveness index (RAI), Schimazek's
value (Sch), and petrographic studies were used to evaluate the rock abrasion (Yarali et al., 2008;
Yarali, 2017; Balani et al., 2017; Majeed & Abu Bakar, 2015; Aydin, 2019). The Cerchar test is
commonly employed in civil projects to assess rock abrasiveness. However, to establish a better
understanding of its correlation with geomechanical properties, further investigations are
necessary. Several researchers have proposed relationships between the Cerchar Abrasivity Index
(CAI) and various petrographical, physical, and mechanical characteristics of rocks (Ko et al.,
2016; Undul & Er, 2017; Aligholi et al., 2018; Yagiz et al., 2020; Shi et al., 2024). These
relationships can provide valuable insights into the abrasiveness of rocks. The potential
relationships between CAI and rock characteristics showed in Table 1.

The CAI test offers advantages in terms of its ease, affordability, and time efficiency. As a
result, it is more commonly utilized for assessing rock abrasiveness compared to other methods
like NTNU and LCPC (Aydin, 2019; Yagiz et al., 2020; Massalov et al., 2020). The CAI test
method has been employed by using the British coal mining and is applied in the tunneling
engineering as well (Karrari et al., 2023; Karrari et al., 2024). The CAI test is developed
according to the French standard (AFNOR, 2000). ISRM has proposed a new method (ISRM-
SM) to carry out this test.

Table 1. Relationships between CAl and rock characteristics

Scholars Correlation with CAI Rock type

(Er and Tugrul 2016) CAl =212 + 0.03 Wa Granitic Rocks
CAIl =1.87 + 0.04 SH
CAIl =2.55 +0.58 Vp
CAIl=4.52+1.47 Qs
CAI= 2.73+0.04 SHV
CAI=3.19+0.02 UCS
CAI=3.73+0.11 BTS

(Ko et al. 2016) CAIl =4.8668 + 0.05467 UCS — 0.149 B1 — 0.2945 Bs Granite, Pegmatite, Propylite,
Diorite, Gabbro
CAIl =-1.102 POPA + 3.850 Andesite and Rhyodacite

CAI = 1.1265 (POPA)2 - 3.0879 (POPA) + 4.6078
CAI = - 1.006 PPIg.Felds + 4.4504
CAI = -0.4753 (PPIg.Felds)" 2 + 0.3459 PPIg.Felds +

3.6317
CAl = 11.045(FOPA)* 2 - 10.578(FOPA) + 5.0484
(Garzén-Roca and CAI =1.37CAI* + 1.88 Andesitic Rocks
Torrijo 2020)
(Torrijo Garzén-Roca CAIl =1.8243 PL (mm) + 0.4447 Andesitic rocks
2020)

CAI = 0.0305 PL (%) + 0.6360
CAI = 0.055Si02 + 0.026FeO + 0.055MgO
+0.024Ca0 + 0.022Na20 + 0.022K20 -1.32

Wa: Waveness average, SH: shore harness, Vp: P-wave velocity, Qs: quartz size, SHV: Schmidt hardness value,
BTS: Brazilian tensile strength, UCS: Uniaxial compressive strength, B1: Brittleness value (B1 = UCS /BTS) Bs:
Brittleness value (B; = UCS*BTS/2), POPA: Perimeter of opaque minerals, PPlg.Feld: Perimeter of plagioclase
feldspar, FOPA: Feret’s diameter of opaque minerals, PL (mm): Plagioclase grain size, PL (%): Plagioclase
percentage, (SiO2, FeO, MgO, Ca0, Na20, and K20 percentage).



Geopersia 2025, 15(2): 429-452 431

The CAI test consists of scratching a steel stylus by the hardness of (HRC 55 + 1) with a 90°
conical tip (Alber et al., 2014). In this study, according to the ISRM-SM, five tests are carried
out on each sample to obtain the average CAI value. The scratching action's speed (accepted by
ISRM-SM standard) is 10 mm/s for the CAI test.

Petrological, textural, and mechanical rock parameters are useful for obtaining the rock’s
abrasiveness. These factors have been employed by researchers to measure and evaluate the
abrasiveness of rocks (Undul & Er, 2017; Yagiz et al., 2020; Teymen, 2020). In the following,
recent studies that used petrographic, textural, and mechanical characteristics to evaluate the
CAl are presented.

In the study conducted by Er & Tugrul (2016), empirical relationships were established
between mineralogical, chemical, petrographical, and physicomechanical properties of
different granitic rocks and the Cerchar Abrasivity Index (CAIl). The results indicated that there
was a positive correlation between the size and content of quartz grains in the granitic rocks
and the CAI. This means that as the size and content of quartz grains increased, the CAl also
increased, suggesting a higher level of abrasiveness. However, no significant relationship was
observed between CAI and other minerals present in the granitic rocks, indicating that the
quartz grains played a more dominant role in determining the rock's abrasiveness in this
particular study. The influence of geomechanical characteristics on Cerchar abrasivity index in
igneous and metamorphic rocks investigated by Ko et al., (2016). The result of multiple
regression analysis shows that quartz mineral is not as important as UCS and brittleness index
(B3) to estimate the CAl values in igneous rocks. Previous scholars ignored the effect of textural
properties on CAl value (e.g., Er & Tugrul, 2016; Ko et al., 2016). Because textural properties
could show the effect of various minerals, it would be useful to evaluate its possible impact.
Undul & Er (2017) studied the effect of texture and geo-mechanical characteristics on the
abrasiveness of 23 igneous rocks (Andesite and Rhyodacite). The outcomes of physical and
mechanical tests showed that as P-wave velocity, UCS, Brittleness index (Bs), BTS, and E
increased, the CAI values increased as well. According to their study, increasing opaque
minerals and grain sizes of altered plagioclase can decrease the CAI values. Aligholi et al.
(2018) predicted the engineering characteristics of igneous rocks by using petrographic
analysis. Their research shows that fine grained (0.08 - 0.15 mm) igneous rocks have better
geomechanical properties (porosity, dry unit weight, P-wave velocity, Isso, and less
abrasiveness (CAI) in comparison with the coarse grained (0.30-1 mm) ones.

The primary objective of this research is to estimate CAl values using petrographical, textural,
and mechanical rock characteristics. This approach helps to reduce the costs associated with
sample preparation and transportation, as well as the time required for conducting laboratory
experiments. On the other hand, petrographical studies can be conducted using smaller samples
and basic laboratory equipment that is readily available. However, not all laboratories may have
the specific equipment required for the CAI test. As a result, empirical analyses have been
developed to estimate CAI values based on the petrographical characteristics of rocks, providing
an alternative approach in cases where the necessary equipment is not accessible. Regression and
ANN analyses are commonly applied in engineering studies and confirmed to be effective in
relating CAI with geomechanical features (e.g., Majeed & Abu Bakar, 2015; Teymen, 2020;
Garzén-Roca et al., 2020; Torrijo Garzon-Roca et al., 2020; Yagiz et al., 2020). Simple
regression, multiple linear and non-linear regression, and ANN models are used in this research.

Methods
Sampling and geomechanical laboratory tests

For this research, atotal of 15 samples were collected from seven sectors along the tunnel route
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in the Gelas water transfer project in west Azerbaijan (Naghadeh City) of Iran (Fig. 1). 15 rock
samples block from Adit (1500, 1550, 1600, and 1650) and cylindrical cores (BH12, KST22,
KST23-S4-19 m, KST23-S5-268m, KST23-S6-206m, KST16, KSC1-45m, KSC1-82m, and
KSA2) have been analyzed in this study. The photo of cylindrical core rock samples is shown
in Figure 2. The selection of samples from various sectors allows for a broader representation
of the geological conditions along the tunnel route, providing a more comprehensive
understanding of the rock characteristics and their abrasiveness. The objective is to obtain CAl,
petrographical, textural, and mechanical rock characteristics for estimating wear disc cutters of
TBM. The wear disc cutter numbers will be obtained in the project in the future.

The sampling procedure followed the guidelines outlined in the ISRM 2007 guidelines. The
collected samples included both slightly weathered and unweathered rock specimens. Special
care was taken to ensure that the rock block samples were homogeneous and free from any
weakness planes that could affect the test results. The cylindrical cores and rock blocks were
obtained using a drilling process with a diameter of 54.7 millimeters. Rock core samples are
prepared according to the ISRM (2007) standard. The porosity, unit weight, BTS, UCS, and
point load strength (Isso) tests were done based on ISRM (2007). In addition, the CAI test was
performed based on ISRM (Alber et al., 2014). The list of test names, number of tests, and used

standards are indicated in Table 2.

Table 2. The list of test names, number of tests and used standard

Test name Number of tests Used standard
Porosity 5 ISRM (2007)
Unit weight 5 ISRM (2007)
BTS 10 ISRM (2007)
UCs 5 ISRM (2007)
Isso 10 ISRM (2007)
CAI 5 ISRM (2014).
Legend — 45'19.011, 45° 2:{ 30"E
o Vilage B 2 Glass water cdnveyancetunnel (?mt 2)
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s Tunnel route

4 ‘ E l\aghadeh
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Figure 1. Location and geological map of the rock samples
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Figure 2. The picture of cylindrical cores rock samples .

In this study, various statistical analyses were conducted to investigate the relationships
between the Cerchar Abrasivity Index, petrographic and textural features, and engineering
properties of the rocks. These analyses included Pearson's correlation, simple regression,
multiple linear regression, non-linear regression, and artificial neural network (ANN) analysis.
These statistical techniques were employed to identify and quantify the relations between CAI
values and the examined rock characteristics. By utilizing these analytical approaches, the study
aimed to establish meaningful relationships and gain insights into how the petrographic and
textural features of the rocks influence their CAIl values and engineering properties. The
statistical analysis was performed utilizing SPSS software version 23. Also, the ANN analysis
was performed utilizing Matlab software version R2016a.

Cerchar abrasivity test

The CAI tests in this study were performed using the third-generation device developed by
West (1989). A total of fifty-five HRC styluses were utilized for the testing process. The rock
samples were securely held in a vise under a 7-kilogram load, and the surface was scratched at
regular 10-millimeter intervals, as illustrated in (Fig. 3). The specimens had a diameter of 54
millimeters, a height ranging from 30 to 50 millimeters, and a smooth surface achieved through
saw cutting. To ensure accurate and reliable results, this technique was carried out a minimum
of five times in two directions using a new or resharpened steel tip for each individual sample.
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Petrographic studies of rock samples

For the petrographic analysis, thin sections of the rock samples were studied using optical
microscopy (Table 3). Thin sections are indicated for petrographic analysis in Figure 4. The
major minerals, including quartz, plagioclase, and alkali feldspar, were classified according to
the Streckeisen diagram of petrographical classification, following the standards set by the

International Union of Geological Sciences (Streckeisen, 1976).

Table 3. Modal analysis, locations, and petrographic names of the studied rocks

Rock No Location Mineralogy (%) Petrographic name
1 KSC1-82m ?goﬂ'ésg EI1§ S:rinZl 01(? 43, Mos: -, Bio: 6.33, Chl: Monzogranite
2 KST23-55-268m ?2If4730(:7hz| 1?(;-0,1;5::’ 131 izrﬁYpo:’l.l\sﬂcc)) R Syenogranite
s m MBI DRDMS S0y
4 KST22 ?gOS(Ojs; gI2526AQr2pQ120?)97 Mos: -, Bio: 9.83, Chl: Quartz syenite
s em MLEBPED R B0y,
o em MISBMER@LEWEOE
P em MBRALROSTMS SR g,
o e MLEE LS BN M m By,
o mo  RTAMRQAR N SOLD
o mo  ALESPIO00ES BN WS g
1 1600 km 2«3‘052;2 glo 610A8:]pQ§ 5;.93, Mos: -, Bio: 6.39, Chl: Syenogranite
2w AEXIBSQAD WSSOI g,
5 wommseom MLEOMEDE SISO BN g,
14 KSC1-45m Alf:. 23.00, PI:. 20.30, QZZ.37.41, M.os: 3.00, Bio: 11.80, Monzogranite

Chl: 2.5, Kao: 2.00, Opa: -, Amp: 0.00
15 KST23-S6-206m Alf: 50.60, PI: 28.40, Qz: 8.00, Mos: 1.00, Bio: 10.00, Quartz monzonite

Chl: -, Opa: 2.00, Amp: 0.00

Qz: Quartz; PI: Plagioclase; Alf: Alkali feldspar; Mos: Muscovite; Bio: Biotite; Amp: Amphibole; Chl: Chlorite;

Kao: Kaolinite, Opa: Opaque minerals.

@g 7

Figure 3. Cerchar abrasiveness testing device
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Rock No 15

Figure 4. Thin sections are studied for petrographic analysis

Additionally, the thin sections were examined for the presence of opaque minerals, chlorite,
amphibole, and muscovite, which are considered heavy and accessory minerals in the context
of this study. The identification and characterization of these minerals provide valuable insights
into the petrographic composition of the rocks.

Mineral contents have been quantified by calculating grains number from the thin section
with the polarizing microscope. This method has the following steps: (1) taking images by
digital microscopy, (2) image preparation, (3) extracting petrographic characteristics, and (4)
performing regression analysis for precise investigation of petrographic and textural
characteristics. Then, microscopic pictures of thin sections were considered by using Jmicro
vision software v.1.27. The method of calculating the texture coefficient (TC) by JMicroVision
V.1.27 software is shown in Figure 5. This software is open-source image processing and can
quantifies (manually and automatically components) the common image processing operations.

One routine method to measure rock texture is using a texture coefficient (TC) technique,
recommended by Howarth & Rowlands (1987). A number of scholars have applied TC to predict
the geotechnical characteristics of rocks (e.g., Howarth & Rowlands, 1987; Ersoy & Waller,
1995; Singh & Verma, 2012; Ozturk & Nasuf, 2013; Ozturk et al., 2014; Tumac et al., 2017,
Rostami et al., 2020; Karrari et al., 2023). The textural coefficient is determined by Eqg. (1):
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2-Thin section
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6- Measured parameters Lt L 5- Image analysis
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Perimeter
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. Width
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FF Orinetation
(Tc) «<= Zi—

AF Elongation

AW Eccentricity

AR Rectangularity
Solidity
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Convexity

NO N1

1
TC =AW x [(Nl +N0) X (ﬁ) + (N1+N0

Where,

TC: Textural coefficient

AW: Grain packing density (Area weighting)

No: The number of grains with an aspect ratio is less than a pre-set discrimination level of 2.
N1: The number of grains with an aspect ratio is greater than a pre-set discrimination level of
2.

FFo: Mathematics average of discriminated Form-Factors of all No grains

AR1: Mathematics average of discriminated aspect ratios of N1 grains

AF1: Angle Factor determining all N1 grains orientation

In this study, microscopic images of the thin sections were analyzed using Jmicro Vision
software version 1.27. The software facilitated the examination and analysis of the grain
boundaries of the various rock components. To ensure accurate results, the software utilized a
background registration procedure. Once the grain boundaries were calibrated and digitized,
several parameters were automatically computed, including the minimum Feret's diameter,
area, perimeter, maximum Feret's diameter, and the orientation of the individual grains. Feret's
diameter is defined as being the perpendicular distance between two parallel, outer tangents to
an object. These parameters provide quantitative measurements and insights into the size,
shape, and spatial arrangement of the grains within the thin sections, enhancing the
understanding of the rock's textural characteristics. In the end step, TC was determined by using
Eqg. (1). At least 250 grains are considered in each thin section to calculate the TC.

Acidic igneous rocks normally have four main minerals, including plagioclase, quartz, K-
feldspar, and biotite, and accessory minerals (muscovite, Opaque) (Streckeisen, 1976). Various
minerals usually have different grain sizes, which can be calculated with a heterogeneity index
(H). The average grain size Ra is obtained as (Eq. (2)). The influence of material heterogeneity
index is calculated as (Eg. 3) (Peng et al., 2017).

) x (AF1) X (AR1)] 1)
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Ra= 22 (wi * ri) (2)

H= 2 G- 2 ®

Where ri, Wi, m are the mean grain size of various minerals (mm), volume percentage, and the
number of different major and minor minerals, respectively.
Grain size homogeneity Index (Gl) is defined as a fabric factor, which explains the distribution
of grain size in the rock (Eq. 4) (Karrari et al., 2023).
— Agavg
Gl= JX (Agi-Agavg) "2 )
Where Agi is the individual grain area and Adavg iS the average area of the grains.
Saturation Index (SI) is defined as the ratio of quartz percentage (Qtz) to the sum of feldspars
(Alf + PI) and quartz percentage (Eg. 5) (Karrari et al., 2023).
_ Qtz%
" (AIf+P14+Qtz)% (5)
Feldspathic Index (FI) is defined as the percentage ratio of alkali-feldspars (Alf) to the sum

of alkali-feldspars and plagioclase (PI) percentage (Eg. 6) (Karrari et al., 2023).
Alf%
FI =

~ (P1+AID% (6)
Colouration Index (CI) is denoted as the sum volume of the light minerals (alkali-feldspars,
plagioclase, and quartz) minus colored and dark minerals (muscovite, chlorite, amphibole,
biotite, and opaque minerals) percentages in rock (Eq. 7) (Karrari et al., 2023).
Cl =100 (Alf + Pl + Qtz) % @)
ABI (Abrasivity Index) is applied for estimating rock abrasiveness. ABI defined as multiple
of two factors of Vickers hardness number of rock (VHNR) and UCS (Eq. 8) (Hassanpour et
al., 2014; Hassanpour et al., 2019).
ABI = VHNR x (UCS/100) (8)
VHNR and UCS are the weighted mean of Vickers hardness number of particular minerals
and uniaxial compressive strength based on MPa unit, respectively.
Rock Abrasivity Index (RAI) is included two factors: equivalent quartz content (EQC) and
UCS (Eg. 9) (Plinninger, 2002).
RAI = UCS x EQC = ), UCS. mi. Ri 9)
Where EQC, m;, Ri, n, and UCS are the equivalent quartz content, the percentage of minerals,
Rosiwal hardness that is estimated by using Rosiwal hardness of quartz, the total of major and
minor minerals in a sample, uniaxial compressive strength, respectively. The Rosiwal hardness
of each mineral is divided by the Rosiwal hardness of quartz, which quartz hardness is
considered 100 percentage, and total other minerals' hardness will be compared to quartz. The
Rosiwal hardness of the mineral will be modified for the ratio of each mineral in the rock
sample, and the EQC of the rock will be calculated. In this study, Rosiwal hardness was
determined according to Mohs hardness of the constituent minerals by using equation 10
(Ghasemi, 2010):
Rosiwal hardness = exp ((Mohs hardness-2.12)/1.05) (10)
Schimazek's Sch value was specified through Schimazek & Knatz (1970) presented on

Schimazek's pin-on-disc test mentioned by Verhoef (1997) (Eqg. 11).
Sch =2 8 (11)

Where, EQC is the equivalent quartz content (percentage), BTS is Brazilian tensile strength
(MPa), and ¢ is the mean grain size of minerals (mm).

Results

Tables 4 and 5 present the results of petrographic and engineering features of 15 samples of
acidic igneous rock. Textural parameters including the TC vary between 0.9 to 2.28, the H and



Geopersia 2025, 15(2): 429-452 439

GI values range between 0.82 to 2.79, and 0.01 to 0.06, respectively. According to Ozturk &
Nasuf classification (2013), TC values are high to very high.

Mineralogical indices, including the SI, FI, and CI values, ranges from 0.07 to 0.50, 0.32 to
0.90, and 6.70 to 40.04, respectively. According to Streckeisen classification (1976), Sl values
are quartzite to Feldspars rocks, FI values are Plagioclase to almost Alkali-feldspars, and ClI
values are Leucocratic and Hololeucocratic. These indices showed that these igneous rocks are
categorized as felsic rocks.

Physical characteristics including porosity and dry unit weight values are from 0.47 % to
1.37 % and 26.00 kN/m?3 to 28.06 kN/m?3, respectively. Based on the Anon classification (1977),
dry unit weight values vary from high to very high, and the porosity values vary from low to
very low. Physical characteristics such as dry unit weight and porosity showed that these
parameters depend on grain constituents, grain mineralogical, and rock texture (Roy, 2017).
For example, the highest porosity is for rock number 4 that has the lowest TC, H, Gl, SI, ClI,
CAl, ABI, and RAI.

The UCS test yielded results ranging from 40.56 MPa to 155.30 MPa, representing the
compressive strength of the rock samples. On the other hand, the BTS test provided results
ranging from 8.00 MPa to 18.81 MPa, indicating the tensile strength of the rock samples. Isso
test results are in the range of 5.3 t0 9.27 MPa, and Et values are from 23.43 MPa to 85.80 MPa.
Based on the ISRM classification (2007), the UCS values vary from low to high. According to
the Bieniawski classification (1975), the Isso values vary from high to very high. Mechanical
properties showed that these igneous rocks have high compressive and tensile strength.

The Sch values range from 1.21 to 5.06, representing the Schimazek abrasivity index. The
CAIl values range from 1.17 to 4.48, indicating the Cerchar Abrasivity Index. The ABI values
range from 279.05 to 1334.5, representing the Abrasivity Index of Bituminous Coal. Lastly, the
RAI values range from 4.35 to 95.79, indicating the Rock Abrasivity Index. According to the
Plinninger classification (2010), the RAI values vary from non-abrasive to very abrasive rocks.
Based on the Alber et al. (2014) classification, the CAI values are low to very high. Abrasivity
indices showed that these igneous rocks have low to very high abrasiveness.

In this study, experimental investigations including textural parameters, mineralogical
indices, physical properties, and mechanical properties showed that most samples have high
TC, H, SI, CAIl, ABI, and RAI values. To evaluate the relationships between CAI with
petrographical, textural, and mechanical rock characteristics, statistical analyses were used.

Table 4. Petrographic features of rock samples

Textural parameters Mineralogical indices
. Min Max of .
Rﬁgk (':,]:Te]% Pe(rr:m]e)t er of Feret’s Feret’s (i,:?ne) TC H Gl Sl Fl Cl

(mm) (mm)
1 0.10 1.39 0.25 0.44 0.28 1.76 2.37 0.05 0.21 0.60 10.86
2 0.07 0.58 0.12 0.29 0.13 1.72 1.88 0.02 0.22 0.69 40.04
3 0.30 241 0.53 0.77 0.56 151 1.70 0.04 0.18 0.85 12.16
4 0.37 2.97 0.80 0.95 0.88 0.99 0.85 0.02 0.07 0.90 5.30
5 0.04 0.99 0.18 0.29 0.15 2.03 2.79 0.06 0.19 0.60 29.96
6 0.04 0.91 0.18 0.30 0.20 191 1.90 0.03 0.16 0.61 22.54
7 0.20 1.10 0.40 0.69 0.25 140 1.36 0.03 0.14 0.82 16.11
8 0.08 1.01 0.29 0.40 0.22 1.54 144 0.03 0.20 0.81 21.04
9 0.18 1.82 0.37 0.59 0.30 1.82 2.37 0.04 0.34 0.70 15.93
10 0.20 2.01 0.32 0.55 0.42 1.78 1.99 0.06 0.31 0.60 26.63
11 0.07 0.88 0.17 0.28 0.29 171 1.69 0.01 0.27 0.78 11.98
12 0.06 0.96 0.19 0.31 0.20 1.80 1.66 0.02 0.23 0.76 28.98
13 0.15 161 0.31 0.50 0.40 2.28 2.25 0.03 0.50 0.32 6.70
14 0.10 1.40 0.20 0.60 0.40 215 2.30 0.05 0.43 0.60 6.70

15 0.35 2.90 0.75 0.90 0.83 0.90 0.82 0.02 0.09 0.88 12.60
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Table 5. Engineering features of rock samples

Physical characteristics Mechanical characteristics Abrasivity indices
Dry unit .

RockNo - s, o (MPa) MPa Py vPa S mig)  ABl RA
1 25.89 1.23 115.80 16.45 7.93 44.82 3.06 3.10 860.21 62.13
2 27.86 0.47 127.35 18.18 8.92 59.03 3.08 259 655.24 42.07
3 26.09 0.76 118.98 16.52 5.76 49.22 1.33 2.76 807.04 56.19
4 26.09 1.37 40.56 8.31 5.83 23.43 5.06 1.17 279.05 18.89
5 26.68 0.64 128.66 12.22 6.84 30.71 3.39 3.19 773.60 54.08
6 26.88 0.60 149.13 18.35 8.85 39.65 121 2.86 965.40 66.64
7 28.05 1.026 71.78 7.33 5.50 76.41 1.96 221 443.82 30.33
8 27.86 1.256 59.49 10.76 5.04 45.35 1.68 2.37 365.53 35.11
9 21.27 0.615 97.24 12.50 9.27 27.34 1.62 3.48 706.24 53.52
10 26.29 0.749 107.06 12.81 6.57 40.60 3.30 3.06 745.78 50.95
11 26.38 0.608 115.86 14.03 6.57 47.65 2.84 2.88 863.56 64.83
12 26.88 0.346 12551 14.43 7.92 44.94 1.76 2.27 942.04 53.25
13 26.48 0.800 155.30 18.81 8.92 85.80 4.90 4.48 1334.5 95.79
14 25.99 0.850 120.50 15.75 5.30 45.65 3.03 4.00 1012.4 60.59
15 26.29 1.300 45.34 8.00 5.50 24.50 5.00 1.30 340.45 4.35

Statistical analysis

In this research, statistical analyses were conducted to explore the relationships between the
CAl, petrographic and textural features, and engineering properties of the acidic igneous rocks.
Various statistical methods, including linear and nonlinear regression analysis and bivariate
correlation, were employed to assess the potential correlations between these variables. The
statistical results obtained from these analyses were thoroughly investigated and evaluated. The
goal was to identify and select the most suitable models that effectively capture the relationships
between CAI, petrographic and textural features, and engineering properties. This approach
allowed for a comprehensive understanding of the factors influencing the rock's abrasiveness
and provided valuable insights for engineering and construction applications.

Pearson's correlation coefficient

Pearson's correlation coefficient (R) was applied to study the efficiency and significant
correlation between CAI with petrographical, textural, and engineering features (Eq. 12).
Rxyy = COV X, y/ SDx. SDy (12)
Where the Pearson's correlation (Ryy) between the covariance values (COVyy) divided by their
standard deviations (SDx and SDy) is determined, in Table 6, Pearson's correlation coefficients,
the CAI, petrographic features, and engineering characteristics are revealed. Significance of
regression was calculated using hypothesis test (P-value) proposed by Johnson (1998). The P-
value less than 0.05 shows that it is statistically significant at a 95 % confidence level. Many
researchers used this method to evaluate their results (e.g., Khaleghi Esfahani et al., 2019; Torrijo
Garzon-Roca, 2020; Karrari et al., 2023). There is a significant relationship between CAI and
engineering features, including P values of TC, H, SI, FI, BTS, UCS, ABI, and RAI are lower
than 0.05 (Table 6). The best correlation is between CAIl and TC (R = 0.929). It shows that rock
texture is an impressive factor for rock abrasivity in felsic igneous rocks. Also, CAl and Sl have
a high correlation (R = 0.895), display that the mineralogy (quartz content) is an effective factor
to estimate rock abrasivity in felsic igneous rocks. Relationships between CAI with textural
indices (TC, H) and petrographical indices (SI, FI) indicate rock texture and mineralogical
parameters are effective parameters for estimating CAl. Aligholi et al. (2018) reported fabric and
mineralogical properties are significantly effective for predicting engineering features.
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Table 6. Pearson's correlation coefficients and significant level

Properties Textural Mineralogical Physical Mechanical Abrasivity indices
correlation indices indices characteris characteristics

tics
Pearson's TC H SI Fl P (%) UCS BTS Iss0 Sch ABI RAI
correlation (MPa)  (MPa)  (MPa)

CAI (R) 0929 0.850 0.895 -0.845 -0.435 0.771  0.681 0.420 -0.445 0.863 0.888
P value 0.000 0.000 0.006  0.000 0.053 0.001  0.005 0.119 0.116  0.000 0.000

R: P-value: Significance level (0.05), Pearson's correlation coefficients, CAI: Cerchar abrasion index, TC: texture
coefficient, H: heterogeneity index, SlI: Saturation Index, FI: Feldspathic Index, P: porosity, UCS: uniaxial
compressive strength, BTS: Brazilian tensile strength, lsso: point load index, Sch: Schimazek F value, ABI:
abrasion index, RAI: rock abrasiveness index. *significant at 95% confidence level

Increasing the CAI is linked to several changes in the petrographical and engineering
characteristics of acidic igneous rocks. Petrographical features such as Texture Coefficient
(TC), Heterogeneity (H), and Saturation Index (SI) show an increase as CAIl values rise.
Similarly, engineering properties like Uniaxial Compressive Strength (UCS), Abrasivity Index
(ABI), and Rock Abrasivity Index (RAI) also increase with higher CAIl values. However, there
is a negative correlation (-0.845) between CAI and the content of alkali-feldspars (FlI),
indicating a decrease in Fl as CAl increases.

The correlation analysis in this study revealed that the weakest correlation (R = 0.420) was
observed between the Isso and CAl. The significance level (p-value) for this correlation was
found to be less than 0.05, indicating poor significance. This weaker correlation might be
attributed to the mechanism of the point load test. Additionally, an inverse correlation (R=-
0.435) was identified between porosity and CAl. This indicates that as the CAl value increases,
the porosity tends to decrease. Also, Abu Bakar et al. (2016) and Rostami et al. (2020) described
an inverse correlation between CAI and porosity. The inverse relationship between porosity
and CAIl may be due to low strength, and hardness of rock samples.

The inverse correlation between the Feldspathic Index (FI) and Cerchar Abrasivity Index
(CAI) can be attributed to the lower hardness of feldspathic grains compared to quartz. With a
hardness of 6-6.5 on Moh's scale, feldspar grains are softer than quartz (hardness of 7). On the
other hand, the CAIl shows a positive relationship with the Abrasivity Index (ABI), Rock
Abrasivity Index (RAI), grain hardness, and rock strength. As these factors increase, so does
the CAI, indicating a higher level of abrasiveness. Thus, grain hardness and rock strength play
a significant role in determining the CAIl and the overall abrasiveness of rocks. Majeed & Abu
Bakar (2015) reported a logarithmic relationship between RAI and CAl. Their research showed
that rock strength and hardness increased with increasing CAl.

Simple regression analysis

In the following, relations between CAI and engineering features have been examined. While
the relation between the dependent and independent variables is not essentially linear, the non-
linear (curve) estimation must be applied (Norusis, 2002). In linear and non-linear regression
analysis, the good curve estimations such as 6 models: linear (y = ai. CAl +c), inverse (y = (a:
/ CAl) + ¢), logarithmic (y = (ai. Ln (CAl) + c¢), quadratic (y = (a1. CAl) + (az. CAI?) + ¢),
exponential (y = (exp (al.CAl)). c), and power (y = CAI 2-©). Y is the dependent variable, c is
a constant value, a; and a; are regression coefficients.

The efficiency of the statistical analysis were evaluated by normal statistical techniques, such
as the coefficient of determination (R?), adjusted R? (Adj R?), analysis of variance (ANOVA),
and standard error (Std. Er). The R? and Adj R? applied to assess regression models' validity.
Higher R? (R?=1) values show more accurate relationships in linear regression. While R? is a
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well statistical factor, only a greater value of R? is not suitable for comparing between 2
regression models (Omar, 2016). Consequently, two error methods were used for evaluating
relationships. The Mean absolute percentage error (MAPE) and root means square error
(RMSE) for assessing each model is determined by Eqgs. 13 and 14, respectively. The MAPE
percentage for the assessment models shows in Table 7.

R
MAPE = ———t— x 100 (13)
RMSE = \/%2;;1 (Yi — Xi)"2 (14)

Where Yi; is the measured value, X; is the predicted value, and n is a number of samples. If
R? =1, MAPE < 10%, and RMSE = 0, the suggested model would be excellent.

Simple regression analyses were conducted between petrographic, textural, mechanical
characteristics, and CAI for determining these properties. Table 8 shows the best models for
engineering features. The best regression analysis between CAIl and examined engineering
features (TC, H, SI, UCS, ABI, and RAI) was the power model (Table 8).

Textural properties (TC and H) displayed that a good correlation between CAI, TC, and H
(Table 8). The correlation between CAI, and petrographical, mechanical, and abrasivity
characteristics is indicated in Figure 6. Statistical analyses show that CAIl has a better
correlation with TC (R? = 0.898, RMSE = 0.562, MAPE = 12.697) than H (R? = 0.862, RMSE
= 0.485, MAPE = 10.677). As previously, mentioned, TC encompasses grain size, grain
direction, and grain packing. H include different grain sizes minerals (grain size and volume
fraction). So, TC encompasses more parameters of rock texture than H. Neither TC nor H do
not represent the composition and mineralogy of grains.

Petrographical indices (SI, FI) showed the percentage and type of minerals. The good
correlation between petrographical indices is SI (R?=0.837, RMSE = 0.364, MAPE = 12.017).
The saturation index is better than the feldspathic index for comparing CAI because it includes
quartz content, and feldspathic minerals have low abrasiveness specific. Undul & Er (2017)
indicated increasing feldspar, plagioclase, and opaque minerals due to a reduction in CAI
values. Er & Tugrul (2016) mentioned that the quartz content of the granitic rocks increased
CAl. Aligholi et al. (2018) showed a direct relation between CAI, Sl, and FI with correlation
coefficients (R=0.80 and R= 0.69), respectively.

Table 7. Evaluation of models MAPE percentage (McKenzie 2011; Leys et al. 2013)

MAPE (%) Evaluation

MAPE < 10% excellent
10% < MAPE < 20% good

20% < MAPE < 50% reasonable
MAPE > 50% poor

Table 8. The best simple regression analyses between CAl and engineering features

Number Adjusted  Standar

equation Equation R R? R? d error F Sig RMSE MAPE
15 CAIl=1.363 TC 1328 0.948 0.898 0.890 0.120 114292  0.000  0.562 12.697
16 CAIl =1.562 H 0948 0.929 0.862 0.852 0.140 81.376 0.000 0.485 10.677
17 CAI =7.020 SI 9627 0915 0.837 0.824 0.152 66.554 0.000  0.364 12.017
18 CAI=4.768 - 0.2007 FI- 0874 0.763 0.724 0.459 19.345 0.000 0433 15.335
19 CAl :30.?06879FJCS 0738 0851 0.725 0.703 0.198 34.193 0.000  0.645 16.927
20 CAl=0.291 BTS %87 0730  0.533 0.497 0.257 14.830 0.002  0.621 21.959
21 CAI=0.028 ABI %% 0868 0.753 0.734 0.187 39.665 0.000 0.518 15.028

22 CAI=0.547 RAI 0419 0850 0.722 0.700 0.199 33.732 0.000 0.507 16.387
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Figure 6. The correlation between CAl, petrographical, mechanical, and abrasivity characteristics

Mechanical characteristics revealed that a reasonable correlation exists between CAI and UCS with
a 0.725 coefficient of determination and 0.645 and 16.927 RMSE and MAPE (Table 8, Eqg. 19).
Because rock compressive strength is resistance to indentation pin to rock performed test. Similar
relations between CAIl and UCS were presented in other studies (Ko et al., 2016; Rostami et al., 2020).
Abrasiveness characteristics showed that the good correlations between CAI, ABI, and RAI
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with R?= 0.753, RMSE = 0.518, MAPE = 15.028 and R?= 0.722, RMSE = 0.507, MAPE =
16.387 were presented in Table 8 (Eqg. 21 and 22), respectively. ABI has two good statistical
parameters and has a lower MAPE and higher R? in comparison with RAI. Considering, ABI
composing of Vickers hardness was showed more effective than RAI that composing of
equivalent quartz content. Vickers hardness has the cubic indentation to rock penetration.
However, EQC has been calculated from Rosiwal hardness that this quantified by Moh's
hardness scale. Moh's hardness scale indicated relative hardness and did not determine a precise
hardness value. Majeed & Abu Bakar (2015) reported a logarithmic relationship between RAI
and CAI with coefficient determination from 0.43 to 0.53.

The initial analysis indicated that mechanical characteristics and abrasivity indices have the
potential to be utilized for estimating the Cerchar Abrasivity Index (CAIl). To improve the
accuracy of the predictions, further analysis was conducted using multiple linear and non-linear
regression techniques, aiming to enhance the R? value.

Multiple Linear Regression (MLR) and Non-Linear Regression (MNLR)

The multiple linear and non-linear regression analyses were applied to acquire the best-fit empirical
relations. In this research, statistical analyses were conducted by two and three independent
variables with the status that one of the independent variables was a CAl. Consequently, Egs. 23
and 24 are presented to estimate CAIl based on geomechanical characteristics.
CAl =ag+ o1 Xy +... +al X" (23)
CAl = ag + az. X1 “+...+ ap. Xp @ (24)
Where CAI, X1, and X, are the geomechanical characteristics, oo is a constant, a3, a2, and an
are the regression coefficients of Xi, and X, respectively. The power multiple non-linear
regression analyses were applied to determine the empirical relations. Since this equation in
preliminary examination indicated a good R?, RMSE, and MAPE. Unique evaluation multiple
linear equations were presented in Table 9 (Egs. 25 to 36). In this table, the correlation
coefficient (R?), adjusted correlation (R?), standard error, the significance values, F statistics,
MAPE, and RMSE values were applied to assess and quantify the presented models' accuracy.
In addition, for easy understanding, the MLR models are shown the number equations (Egs. 25
to 36) against R, RMSE, and MAPE in Figure 7.

Table 9. Results of multiple linear regression analysis between TC, H, ABI, RAI, SI, Fl and CAI

Number Equation R re  Adiusted - Standard F sig  RMSE  MAPE
equation R error
CAI=-0.250+3.108 S
25 oaare 0.963 0927 0915 0.254 76630 0000 0320 8190
2 CAl= 1.1033?8-1%6451 FI+ 0939 0881 0861 0325 4433 0000 0454 11177
27 CAI=-0187+1225TC  q53 (9o 0.908 0.264  47.222 0000 0321  8.147

+0.001 UCS + 3.230 Sl
CAI=0.946 + 1.953 TC -
28 0.004 UCS - 1.482 FI 0.942 0.887 0.857 0.330 28.856 0.000 0.454 11.485

CAI=0.376 + 4.405 SI +

29 e 0969 0940  0.930 0231 93337 0000 0219  7.045
30 CAl= 3327823 i‘g‘r’z FI* 0015 083 0809 0381 30658 0000 0363 12290
31 CAI=3195+0654H+ 417 g9 0707 0393 19292 0000 0367  12.663

0.003 UCS - 2.687 FI
CAI=0.302 +0.588 H +
32 0.004 UCS + 4.187 S| 0.975  0.950 0.937 0.219 69.913 0.000 0.213 6.386

CAIl=-0.549 + 0.001

33 ABI + 1.655 TC 0.937 0.879 0.859 0.328 43.526 0.000 0.487 11.475
CAIl=0.318 + 0.001 ABI
34 +0.614 H +3.497 S| 0.981 0.962 0.952 0.191 93.721 0.000 0.282 9.556
CAIl=-0.405 +0.012
35 RAI + 1.545 TC 0.938 0.881 0.861 0.325 44.268 0.000 0.498 11.923

CAI=0.399 + 0.011 RAI

36 +0.562 H +3.442 S|

0.979  0.958 0.947 0.200 84.476 0.000 0.195 6.094
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Figure 7. The number equations (Egs. 25 to 36) against R?>, RMSE, and MAPE in MLR models

The MLR and MNLR models were used at a significance level of 0.95. The verification of
presented equations between TC, H, SI, FI, UCS, ABI, and RAI, is used to estimate CAl. In
addition, the variance analysis technique is applied for investigating the significance of regression
in multiple linear and non-linear regressions. The results displayed that amid totally the multiple
linear regression analyzed parameters H, ABI, and Sl showed the best fit with CAI (R? = 0.962,
RMSE = 0.282, MAPE = 9.556) (Eg. 34, Table 8). This equation has an excellent relationship
because it has the highest R? and lowest RMSE and MAPE (Eq. 34). Results showed that the
good multiple linear regression analyzed parameters RAI, H, and SI showed the best fit with CAl
(R?=0.958, RMSE = 0.195, MAPE = 6.094) (Eq. 36, Table 8). These equations (Egs. 34 and 36)
revealed the influence of mineralogical properties (Sl), textural properties (H), hardness, and rock
strength (ABI) on CAl. The comparison between two equations, 29 and 30, revealed a significant
relation. The H has better relation with SI rather than FI for estimating CAl, respectively (R? =
0.940, RMSE = 0.219, MAPE = 7.045 and R? = 0.836, RMSE = 0.363, MAPE = 12.290). Also,
comparison between two equations 25 and 26 indicated that the TC have better relation with SI
(R?=0.927, RMSE = 0.320, MAPE = 8.190) rather than FI (R? = 0.881, RMSE = 0.454, MAPE
= 11.177) for estimating CAIl. The reason may be related to the content of quartz with different
sizes. Because by increasing quartz, heterogeneity, and CAl increases. Also, the relation between
TC and FI may be connected to alkali feldspar subhedral grain shape, and TC is affected from
No, N1, and FFo (EQ. 1). The comparison between two equations 25 and 29 showed that the H has
better relation with Sl rather than TC with Sl for estimating CAl, respectively (R?=0.927, RMSE
=0.320, MAPE =8.190 and R? = 0.940, RMSE = 0.219, MAPE = 7.045). The different minerals
sizes (H) are more effective than TC on CAl. When pin is scratched on rock samples, various
minerals size and quartz content may cause increasing CAl value. The comparison of three
equations 32, 34, and 36 indicated that the rock strength is more effective than hardness. Also,
ABI is more effective than RAL.

Table 10 indicates the multiple non-linear regression relations (Egs. 37 to 48). Additionally,
for easy understanding, the MNLR models showed the number equations (Egs. 37 to 48) against
R?, RMSE, and MAPE in Figure 8. In this Table, the results of multiple nonlinear regression
analyses between TC, H, ABI, RAI, SI, FI, and CAI are presented. Amid totally the multiple
non-linear regression analyzed parameters, ABI, H, and SI displayed the best fit with CAI (R?
= 0.972, RMSE = 0.148, MAPE = 5.039 (Table 10, Eqg. 46). Results displayed that the good
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multiple non-linear regression analyzed parameters UCS, H, and SI showed the best fit with
CAl (R?=0.970, RMSE =0.151, MAPE =5.068) (Table 10, Eq. 44). These relationships (Egs.
46 and 44) have the highest R? and lowest RMSE and MAPE.

Analysis of the relationships revealed that the relationship between H and the independent
variables (CAI, UCS, FlI, Sl) is better than TC. As previously mentioned, the H parameter is
more efficient than TC. The assessment between two equations, 41 and 43, displayed that the
R?, RMSE, and MAPE are approximately similar. Equation 43 has 3 independent variables
(UCS, H, and FI), but Equation 41 has 2 independent variables (H and FI). These relations
revealed that the UCS does not have a significant influence on CAI. So, textural and
mineralogical properties are more effective than rock strength.

Generally, these relationships are based on higher R? and lower RMSE and MAPE. They
showed that nonlinear equations (Table 10) had relatively better results than linear equations
(Table 9).

tos - MNLR o
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37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48
RMSE| 0.28 | 0.411|0.262|0.419|0.277| 0.29 [0.276|0.151|0.523|0.148| 0.522| 0.152
MAPE | 7.86810.707| 7.416 (11.276| 7.105| 7.693| 7.08 | 5.068 [11.888| 5.03911.901 5.152
R2 0.931|0.888|0.933|0.891|0.898(0.968(0.898| 0.97 | 0.884|0.972|0.892| 0.969

Number equation
Figure 8. The number equations (Egs. 37 to 48) against R>, RMSE, and MAPE in MNLR models

Table 10. Results of multiple nonlinear regression analysis between TC, H, ABI, RAI, SI, Fl and CAI

Number Adjusted  Standard

: , :
equation Equation R R R? orror F sig  RMSE MAPE
CAl =-8.758 + 10.136
37 07 noog gl ity 0964 0931 0923 0274 128554 0000 0280  7.868
38 CAI= 436345438 0942 0888 0876 0144 76468 0000 0411  10.707

TC 04 +0.262 F| 1398

CAIl =-81.849 + 8.439

39 TC %2 +73.977 UCS 0.965 0.933 0.926 0.100 169.677  0.000 0.262 7.416
0.003 4+ 5.918 SI 2.102

CAl =-2842 + 6.217

40 TCO4-1559 UCSOl+ 0943 0891 0878 0.149 69.987 0000 0419  11.276
0.259 F| 1391
CAl = - 16.418 + 18.016
41 0140015 F| 202 0947 0898 0889 0296  108.645 0000 0277  7.105
42 CAI=-13.971+ 15577 4gg3  (9s8 0,964 0076 303767 0000 0290  7.693

H 01 + 14,209 Sl 3171
CAl = - 16.415 + 18.120
43 HO0.1-0072UCS0.1+ 0947 0898  0.889 0296  108.840 0000 0276  7.080
0.015 FI -3.969
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These equations showed that the model fits the data well and can estimate CAI,
petrographical indices (SI and Fl), and textural features (TC and H), abrasiveness properties
(ABI and RAI) with acceptable accuracy.

Artificial Neural Network (ANN)

The artificial neural network (ANN) is a statically model based on the configuration and
functions of biological neural networks. The ANN modeling instrument is applied for
establishing relations between inputs and outputs non-linear and intricate (Mishra et al., 2015).
The ANN model applied for this research is a multi-layer perceptron (MLP) (Fig. 9a, b). The
configuration of ANN models contains 2 and 3 inputs, 5 and 7 neurons in the hidden layer, and
one output (Fig. 9a, b). Hecht-Nielsen (1987) suggested the number of hidden layers for ANN
model, applied in this study, is <2 (inputs) + 1. The ANN model was made through Matlab
software version R2016a.

The artificial neural network (ANN) model used in this study was trained through repeated
exposure to input and output data. The goal of the training process was to minimize the error
between the model's output and the experimental output. To achieve this, the Levenberg-
Marquardt algorithm, which is a second-order algorithm known for its efficiency in training
medium-sized feedforward ANN models, was employed. This algorithm is a type of
backpropagation neural network architecture that utilizes the gradient descent error
optimization method (Ticknor, 2013).

In this research, the percentage for training and test ANN analysis is 85% and 15%,
respectively. The input variables (TC, H, SI, FI, UCS, ABI, and RAI) were used to estimate
CAIl. The ANN models were offered in Table 11 (Models. 49 to 60). For easy understanding,
the MNLR models showed the number equations (Egs. 49 to 60) against R2, RMSE, and MAPE
in Figure 10. The best ANN model analysis was obtained between ABI, CAl, TC, and, SI (R?
= 0.974, RMSE = 0.137, MAPE = 4.610) (Table 11; Model. 58). The good ANN model
presented between CAI, and H, UCS, and Sl (R? = 0.973, RMSE = 0.131, MAPE = 4.678)
(Table 11; Model. 56). ANN results show high accuracy for estimating CAIl. ANN model
analyses have higher R, R?, adjusted R?, and F statistics in comparison with The MLR and
MNLR analysis. Also, the results displayed a reduction in the RMSE and MAPE values
between the ANN analyses in comparison with MLR and MNLR analyses. Overall, ANN
outperformed the MLLR and MLR models.
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Figure 9. General scheme of ANN models structure. a) The architecture of model includes 2 inputs, 5
hidden layers, one input. b) The architecture of model includes 3 inputs, 7 hidden layers, and one output
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Table 11. Results of ANN analysis between dependent and independent variables

Number Dependent Independent Adjusted  Standard

) .
model variables variables R R R? error F S19 RMSE  MAPE
49 CAl TC, SI 0.969 0.940 0.935 0.068 200.69 0.000 0.224 5.755
50 CAl TC, FI 0.957 0.915 0.909 0.081 140.02 0.000 0.096 4.631
51 CAl TC, UCS, SI 0.972 0.945 0.940 0.065 221.82 0.000 0.213 6.386
52 CAl TC, UCS, FI 0.963 0.928 0.922 0.074 167.41 0.000 0.243 7.677
53 CAl H, SI 0.985 0.970 0.968 0.048 42350 0.000 0.156 4578
54 CAl H, FI 0.964 0.930 0.924 0.073 172.25 0.000 0.240 5.554
55 CAl H, UCS, FI 0.954 0.910 0.903 0.083 131.37 0.000 0.272 7.545
56 CAl H, UCS, SI 0.986 0.973 0.972 0.040 609.70 0.000 0.131 4.678
57 CAl ABI, TC 0.953 0.908 0.901 0.084 128.26  0.000 0.275 8.527
58 CAl ABI, SI, H 0.987 0.974 0.971 0.039 494.37 0.000 0.137 4610
59 CAl RAI, TC 0.957 0.915 0.909 0.081 14053 0.000 0.264 6.481
60 CAl RAI SI, H 0.985 0.970 0.968 0.048 426.40 0.000 0.156 4311
ANN
0.98 - 9
4 8
0.96 r
1 7
094 {6 4
N =
o 15
0.92 ¢ o
. 4 oa
= . L
0.9 3 o
12 <
0.88 r >
11
0.86 49 50 51 52 53 54 55 56 57 58 59 60 0
RMSE | 0.224 | 0.096 | 0.213 | 0.243 | 0.156 | 0.24 | 0.272 | 0.131 | 0.275 | 0.137 | 0.264 | 0.156
MAPE | 5.755 | 4.631 | 6.386 | 7.677 | 4578 | 5.554 | 7.545 | 4.678 | 8.527 | 4.61 | 6.481 | 4.311
R2 0.94 | 0.915 | 0.945 | 0.928 | 0.97 | 0.93 | 0.91 | 0.973 | 0.908 | 0.974 | 0.915 | 0.97

Number equation
Figure 10. The number equations (Egs. 37 to 48) against R?, RMSE, and MAPE in MNLR models

Discussion

The results show that increasing the CAI is related to the petrographical and engineering
characteristics of acidic igneous rocks. Petrographical features such as TC, H, and SI show an
increase in CAl values. The CAIl and Sl have a high correlation coefficient (R = 0.895). Aligholi
et al. (2018) described mineralogical and fabric properties are significantly effective for
predicting engineering features. He showed a direct relation between CAIl and Sl with a
correlation coefficient equal to 0.80. Sl displays that the quartz content is an effective factor in
estimating rock abrasivity in felsic igneous rocks. Sl is better than FI for comparing CAIl because
it includes quartz content, and feldspathic minerals have low abrasiveness specific. Undul & Er
(2017) showed increasing feldspar, plagioclase, and opaque minerals due to a decrease in CAl
values. Er &Tugrul (2016) stated that the quartz content of the granitic rocks increased CAl.

Additionally, an inverse correlation was identified between CAI and porosity. This shows
that as the CAI value increases, the porosity tends to decrease. Abu Bakar et al. (2016) and
Rostami et al. (2020) defined an inverse correlation between CAI and porosity.

A reasonable correlation exists between CAl and UCS with a 0.725 coefficient of
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determination.

Er &Tugrul (2016), Undul &Er (2017), Ko et al. (2016), and Rostami et al. (2020) showed
that the CAI of magmatic rocks with UCS increased.

In multiple linear and non-linear regression and ANN analysis CAl, ABI, H, and Sl revealed
the highest correlation (Table 9, Eq.34; Table 10, Eq.46; Table 11, Eq.58). The results of the
analysis indicate that SI, H, and ABI are suitable parameters for comparing the abrasiveness of
acidic igneous rocks. These parameters include quartz content, rock texture, strength, and
hardness which affect CAl. Aligholi et al. (2018) presented a multiple linear regression analysis
between CAIl and petrographic features (such as size and shape descriptors, fabric and
mineralogical indices) with a coefficient of determination equal to 0.87 which is not considered
rock strength and hardness. Also, this model has more parameters for calculating.

Conclusions

In this research, the relation between CAI and engineering features was evaluated for 15
samples of 5 types of acidic igneous rocks extracted from the Gelas water transfer tunnel in
west Azerbaijan (Naghadeh City) of Iran. Statically analysis, such as Pearson's correlation,
simple and multiple linear and non-linear regression analysis has been performed to assess the
relations between CAI and each engineering feature including texture coefficient (TC),
heterogeneity (H), Saturation Index (SI), Feldspathic Index (FI), Uniaxial Compressive
Strength (UCS), Abrasivity Index (ABI), and Rock Abrasivity Index (RAI). Based on Pearson's
correlation analysis, the lowest correlation was between CAI and Sch, Issg, and P in igneous
rocks. The Uniaxial Compressive Strength (UCS) is the only mechanical property that shows a
significant correlation with the Cerchar Abrasivity Index (CAIl). As the CAI value increases,
various engineering features including Texture Coefficient (TC), Heterogeneity (H), Saturation
Index (SI), UCS, Abrasivity Index (ABI), and Rock Abrasivity Index (RAI) also increase.
However, the Feldspathic Index (FI) and porosity (P) show a decreasing trend as the CAl value
increases. CAl and TC have the best correlation in simple regression analysis (Table 8; Eqg.15).
In multiple linear regression analysis CAIl, ABI, H, and Sl revealed the highest correlation
(Table 9; Eq.34). In multiple non-linear regression analysis CAl, ABI, H, and Sl showed the
highest correlation (Table 10; Eq.46). In ANN analysis CAl, ABI, H, and, Sl are the best models
(Table 11; Eqg.58). The results of the analysis indicate that the Saturation Index (SI),
Heterogeneity (H), and Abrasivity Index (ABI) are suitable parameters for comparing the
abrasiveness of acidic igneous rocks. The study suggests that H is a better indicator than Texture
Coefficient (TC), and the saturation index is more effective than the feldspathic index for
comparing the Cerchar Abrasivity Index (CAIl). These findings can be applied in predicting the
wear of disc cutters used in Tunnel Boring Machines (TBMSs) for this specific project involving
acidic igneous rocks. However, it should be noted that the dataset used in this study was limited
to acidic igneous rocks, and further validation is recommended for other rock types. The
presented equations can serve as a starting point for future research in this field.
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