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Abstract

The most important criteria needed for the investigation and characterization of a rock mass on site in a
geotechnical project are its uniaxial compressive strength (UCS) and tensile strength (TS). The UCS
and TS of rocks are determined directly by complex laboratory or field tests that require specialized
prepared samples and equipment. Therefore, the UCS and TS of rocks are estimated through several
index parameters via regression analysis. The point load index (PLI) due to its simplicity and quickness
is a common parameter for estimating the UCS and TS of rocks. In this study, data mining tools are used
to estimate the UCS and TS [determined through the Brazilian tensile strength (BTS) test] of rock using
PLI. The statistical parameters, including mean absolute error (MAE), root mean squared error (RMSE),
and correlation coefficient (r), are used to evaluate the performance of each data mining tool. The
validity and accuracy of platforms' data mining tools were verified according to the statistical
parameters. The results indicated that all three platforms' data mining tools exhibited remarkable ability
to predict UCS and BTS using PLI. Finally, using platforms' data mining tools obviates the need to
perform the UCS and BTS tests as time-consuming and laborious efforts.

Keywords: Uniaxial Compressive Strength, Brazilian Tensile Strength, Regression Analysis, Machine
Learning.

Introduction

In many rock engineering and rock mechanics field applications, the most important mechanical
and geotechnical indicator is the strength parameter of the rock. When we consider the strength
parameter of rock, the first consideration is the uniaxial compressive strength (UCS), and the
second consideration is the tensile strength (TS). Both are the most widely used key parameters
in the characterization of rock masses for underground operations such as excavation
mechanics, fortification planning, tunnelling, and deformation analysis of underground
openings (Afolagboye et al., 2023; Aksoy et al., 2010; Gao et al., 2021).

However, UCS and TS tests may not always be feasible due to their high cost and long sample
preparation and testing processes (Abdelhedi et al., 2023; Lai et al., 2016). Accurate
measurements of these parameters are performed in a labor-intensive and rigorous manner, in
the field or the laboratory, following globally recognized standard testing protocols (ISRM,
2007). In addition, these tests cannot be performed due to the inability to obtain cores by the
standards, especially from problematic rock masses such as highly fractured, very weak, etc.
(Karaman & Kesimal, 2012). Therefore, accurate and fast estimation of these parameters is
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sometimes required (Abdelhedi et al., 2023; Lai et al., 2016).

In recent years, machine learning (ML) has emerged as a crucial tool for corporate and
industrial applications in addition to academic study. A growing number of businesses in a wide
range of industries have chosen to use ML technology to analyse the massive volumes of data
they must handle due to advancements in hardware in recent years (Villarroya & Baumann,
2023).

Given that ever-increasing volume of data is produced daily, it is imperative to utilize the
effectiveness of massive databases when analysing data for machine learning applications. To
improve analysis skills across a wide range of application areas, including cancer diagnosis,
pollution analysis, weather forecasting, and environmental classification, users will be able to
leverage the most efficient data analysis techniques available (Villarroya & Baumann, 2023).
Learning a prediction model based on training data that depicts the relationship between a set
of input variables and a target variable is the standard problem in machine learning. The reason
machine learning models are so potent is that they can accurately predict future examples once
they have been trained. Such models are widely used because they allow for the automation of
many challenging and/or time-consuming operations (Hendrickx et al., 2021).

The most preferred parameter for estimating UCS and TS [as determined using the Brazilian
tensile strength (BTS) test] is the PLI. The reasons for the popularity of PLI are that the
experiment can be performed both in the field and in the laboratory, it is easy to prepare samples
conforming to the standard for the experiment, the experiment can even be performed on
irregular samples, the experiment is simple, practical, and fast, the test device is simple and
inexpensive, etc.

Bieniawski (Bieniawski, 1975) listed the advantages of the PLI as follows:

(1) Smaller forces are needed so that a small and portable testing machine may be used.
(2) Specimens in the form of cores or irregular lumps are used and require no machining.
(3) More tests may be performed for the same cost

(4) fragile or broken materials may be tested

(5) The results show less scatter than those for the uniaxial compression test

(6) The measurement of strength anisotropy is simplified.

The specific objective of this study is to predict the UCS and BTS of rocks from the PLI
using open-source machine learning platforms. For this purpose, different free and open-source
machine learning platforms were used, and the prediction ability of different machine learning
platforms was measured with metrics such as the correlation coefficient (r), mean absolute error
(MAE), and root mean square error (RMSE).

Previous studies

To date, many researchers have conducted numerous investigations to determine the UCS and
BTS of rocks. In these studies, models have been developed to predict UCS using several rock
properties, such as the PLI, Schmidt hammer rebound hardness, P-wave velocity, unit volume
weight, and abrasiveness index (Andrea et al., 1965; Cargill & Shakoor, 1990; Yilmaz &
Sendir, 2002; Aoki & Matsukura, 2008; Kayabali & Selcuk, 2009; Yilmaz, 2009; Minaeian &
Ahangari, 2013; Karaman & Kesimal, 2015; Armaghani et al., 2016; Térok & Czinder, 2017;
Saedi et al., 2018; Wang & Wan, 2019; Aladejare, 2020; Teymen & Mengug, 2020; Benavente
et al., 2021; Fadhil et al., 2023).

The PLI is considered to be one of the best parameters for estimating the UCS and BTS.
Most of these studies have focused on the use of simple and multiple regression and statistical
techniques to establish many empirical relationships (Mahmoodzadeh et al., 2021; Ibrahim et
al., 2023). Recent studies have proposed a large number of equations that estimate the UCS and
BTS as a function of the PLI (Broch & Franklin, 1972; Ulusay et al., 1994; Basu & Kamran,
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2010; Heidari et al., 2012; Kolapo & Munemo, 2021; Wang et al., 2022; Guan et al., 2024).

Artificial neural networks (ANNSs), which are soft computing-based methods, have also been
extensively used for UCS estimations in recent years. Regression models have also been
successfully used to predict UCS from observed data with satisfactory results (Moussas &
Diamantis, 2021). Over the last 20 years, there has been rapid development in machine learning
algorithms in the data science discipline, and a considerable amount of literature has focused
on the theme of machine learning. Many studies have attempted to determine the design
characteristics of rocks with the help of measured index properties (Hassan & Arman, 2023).
Most of these studies have only been undertaken using a data tool to analyse the dataset. The
studies in which UCS and BTS were predicted by machine learning with PLI as one of the input
parameters are given in Table 1. When Table 1 is analysed, the scarcity of studies on the
estimation of BTS is noteworthy.

When these studies are examined, it is seen that in analyzes using artificial intelligence, it is
necessary to have detailed knowledge about the relevant artificial intelligence tool, to know
coding, etc. However, for the data mining tools preferred in this study, such expertise, etc. is
not needed. Whereas no-code tools are excellent for quickly building proof-of-concept models
to validate the feasibility of a machine learning solution before investing significant time and
resources in custom coding. In this way, researchers will be able to concentrate on the problem
itself, away from the complexity of coding.

Materials and Methods
Dataset

The size of the dataset's samples affects how well machine learning models perform. Many
examples that may be found in the literature are needed to create and compare high-accuracy
models (Bansal et al., 2023; Erdal et al., 2013). To achieve the research objectives of the study,
a database of more than 1200 data points, including UCS, BTS, and PLI values of the rocks
from previous studies, was created (Table 2).

Data analysis using data mining tools

Correlation analysis for relationships and regression analysis to determine causality are
fundamental and significant tasks in statistical data analysis when examining relationships
between variables. Regression analysis and correlation analysis are commonly employed in
traditional statistics. They are also crucial and significant as foundational analyses for machine
learning analysis, including deep learning. This is because in deep learning analysis, variables
with high correlation are chosen first, and to analyse the causal relationship, fundamental
analyses such as regression analysis must first be performed (Yoon et al., 2023).

Data mining is the cornerstone of knowledge discovery. It is the process of searching through
a large and disorganized dataset for new and useful information. To effectively extract any
potential information, data need to be prepared (Pyle, 1999). After preparation, a variety of
models are built, and common statistical methods are employed for analysis. Today, there are
many big data mining programs and methodologies available for deriving insights from large
amounts of data (Chahal & Gulia, 2019). Lausch et al. (Lausch et al., 2015) provided an
overview of data mining tools and techniques. After analysis using sample implementation, it
was shown that analysts with little to no programming experience would benefit most from
using the RapidMiner and KNIME tools. The linked open data (LOD) technique was proposed
as a unique option for data mining research. Jovic et al. (Jovi¢ et al., 2014) described the
characteristics of free software that is often utilized.
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Table 1. Soft computing-based methods for estimating the UCS and BTS using PLI

Reference Input Output Method r Rock Type
(Gokceoglu & Zorlu, 2004) BPI, BTS, PLI, Vp  UCS FIS 0.819 Various rock types
(Y1lmaz & Yuksek, 2008) PLI, SHR, SDI, Vp UCS ANN 0.964 Sedimentary
(Yilmaz & Yuksek, 2009) PLI, SHR, Vp, WC UCS ANFIS 0.970 Sedimentary
(Dehghan et al., 2010) n, PLI, SHR, Vp ucs ANN 0.927 Sedimentary
(Sarkar et al., 2010) d, PLI, SDI, Vp ucs ANN 0.995  Sedimentary

Metamorphic
(Mishra & Basu, 2013) BPI, Vp, PLI, SHR  UCS FIS 0.990 Various rock types
(Mohamad et al., 2015) BD, BTS, PLI, Vp  UCS PSO-ANN 0.985 Several
(Momeni et al., 2015) d,PLI, SHR,Vp  UCS PSO-ANN 0.985 Isger?e'ges”tary
ANN 0.985 :
(Madhubabu et al., 2016) d, n, PLI, PR, Vp UCs MLR 0.954 Sedimentary
ANFIS 0.975
(Jahed Armaghani et al., 2016)  PLI, SHR, Vp UCS ANN 0.941 Igneous
NLMR 0.807
(Ferentinou & Fakir, 2017) BTS,d,LT,PLI  UCS ANN 0.922 Isge:e'g;esmary
(Heidari et al., 2018) BPI, PLI, SHR, Vp  UCS FIS 0.954 Sedimentary
(Matin et al., 2018) n, PLI, SHR, Vp UCsS RF 0.964 Sedimentary
. GEP 0.938
(Ince et al., 2019) dary ,dsat, N, PLI ucs MLR 0.911 Igneous
(Saedi et al., 2019) SE: SEI BTS, n, UCs FIS 0.954 Metamorphic
ANFIS 0.978
(Mahdiabadi & Khanlari, ANN 0.959 .
2019) BPI, CPI, PLI UCs MLR 0.935 Sedimentary
MNLR 0.950
(Huang et al., 2019) dary, PLI, SHR BTS IWO-ANN 0.958 Igneous
(Mahdiyar et al., 2019) dary, PLI, SHR BTS PSO-ANN 0.966 Various rock types
ANN 0.889
MARS 0.831 .
(Barzegar et al., 2020) n, PLI, SHR, Vp ucCs M5P 0.574 Sedimentary
RF 0.490
DNN 0.950
DT 0.974
GPR 0.998 .
(Mahmoodzadeh et al., 2021) n, PLI, SHR, Vp ucCs KNN 0.889 Various rock types
LSTM 0.967
SVR 0.967
(Jing et al., 2021) PLI, SHR, Vp ucCs SFS-ANFIS 0.990 Various rock types
(Jinetal., 2022) n, Vp PLI, SHR ucCs GWO-ELM 0.973 Various rock types
HYFIS 0.940
FMR 0.940 .
(Hassan Arman, 2023) PLI, SHR ucCs LWR 0.951 Sedimentary
MLR 0.939

BD: bulk density; BPI: block punch index; BTS: Brazilian tensile strength; CPI cylindrical punch index; d: density; LAAV:
Los Angeles aggregate value; LT: lithology; n: porosity; PLI: point load index; PR: Poisson’s ratio; SDI: slake durability
index;SHR: Schmidt hammer rebound value; UCS: uniaxial compressive strength; Vp: P-wave velocity;WC: water content;
ANN: artificial neural network; DT decision tree; ELM: extreme learning machine; FIS: fuzzy inference system; FMR:
finite mixture regression model; GEP: gene expression programming; GPR: Gaussian process regression; GWO-ELM: grey
wolf algorithm - extreme learning machine; HYFIS: hybrid fuzzy inference systems model; IWO: invasive weed
optimization; KNN: K-nearest neighbor; LSTM: long short term memory; LWR: locally weighted regression; M5P: M5
model tree; MARS: multivariate adaptive regression splines; MLR: multiple linear regression; PSO: particle swarm
optimization; PSO: particle swarm optimization; RF: random forest; SFS: stochastic fractal search algorithm; SVR: support
vector regression

Various algorithms have been used for analysis in different data mining sectors. Weka, R,
RapidMiner, and KNIME were found to be the finest data mining and analytical tools. (Chahal
& Gulia, 2019). Data mining tools are powerful tools that work by combining traditional
statistical methods with artificial intelligence techniques. Their main purpose is to make
meaningful inferences from large and complex datasets, make predictions, and improve
decision-making processes. In general, all these tools (1) prepare for user-supplied data, (2)
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develop and train appropriate statistical prediction models, (3) analyse user-supplied data and
make predictions, and (4) evaluate the performance of the developed model.

In the analysis, three different machine learning platform data mining tools were used.
Regression tools were used for the analyses. A comparative study was conducted on the
accuracy of regression analysis between KNIME, RAPIDMINER, and WEKA.

KNIME

The open-source KNIME Analytics Platform was used in the data analysis so that anyone could
access, integrate, analyse, and visualize the data without knowing any code. Nodes are used by
the KNIME Analytics Platform to symbolize different jobs. Every node is represented by a
multicoloured box with input and output ports. Nodes are capable of reading and writing files,
manipulating data, training models, generating visualizations, and much more. A group of
interconnected nodes defines a workflow (Figure 1). By connecting nodes via their input and
output ports, a process can be constructed. After a workflow is executed, its data flows either
continuously or sequentially from left to right along the links (Berthold et al., 2008).

Table 2. Studies from which the dataset was compiled

References

Rock type (sample number)

(Gunsallus & Kulhawy, 1984)
(Aston et al., 1991)

(Tugrul & Zarif, 1999)
(Altindag, 2000)

(Kahraman et al., 2000)
(Lashkaripour, 2002)

(Yenice, 2002)

(Basarir & Karpuz, 2004)
(Balc1 & Bilgin, 2005)

(Kilig & Teymen, 2008)
(Tahir etal., 2011)

(Heidari et al., 2012)

(Heidari et al., 2013)
(Yesiloglu-Gultekin et al., 2013)
(Mishra & Basu, 2012)
(Yarali & Soyer, 2013)
(Khanlari et al., 2015)
(Ghobadi & Babazadeh, 2015)
(Tripathy et al., 2015)
(Jamshidi et al., 2016)

(Fakir et al., 2017)

(Capik et al., 2017)

(Masoumi et al., 2017)
(Minaeian & Ahangari, 2017)
(Singh et al., 2017)

(Akbay, 2018)

(Fereidooni & Khajevand, 2018)

(Khajevand & Fereidooni, 2018)
(Jamshidi et al., 2020)

Sedimentary (8)
Sedimentary (1)
Igneous (19)
Igneous (1), Metamorphic (3), Sedimentary (3)
Sedimentary (15)
Sedimentary (1)
Sedimentary (12)
Sedimentary (9)
Sedimentary (2)
Igneous (10), Metamorphic (2), Sedimentary (7)
Sedimentary (30)
Sedimentary (15)
Igneous (2)
Igneous (1)

Igneous (19), Metamorphic (20), Sedimentary (18)
Igneous (18), Sedimentary (11)
Sedimentary (15)
sedimentary (9)

Metamorphic (7), Sedimentary (3)
Sedimentary (15)

Igneous (1)

Igneous (15), Sedimentary (26)
Sedimentary (1)

Sedimentary (1)

Igneous (8)

Igneous (3), Metamorphic (1), Sedimentary (3)
Sedimentary (6)

Sedimentary (15)
Sedimentary (10)
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Figure 1. Workflow created in KNIME for this study
RapidMiner

RapidMiner is a data mining analytics application that supports multiple data mining techniques
and is used for data analysis (Hofmann & Klinkenberg, 2013). Applications in industry,
research, education, training, and application development are all included. There are more than
100 learning methods available for regression analysis, classification, and clustering.
Additionally, it supports the majority of database formats, allowing users to import data for
examination and analysis within the application from a variety of database sources. Faculty and
students can obtain renewable 1-year educational licences from RapidMiner. (Javadpour,
2022). As illustrated in Figure 2, the operator can be used to build a process by arranging them
on a canvas and connecting their input and output ports. (Ristoski et al., 2015).

WEKA

A variety of machine learning algorithms and data preprocessing tools are combined on the
WEKA workbench. It enables users to rapidly and easily test current techniques on fresh
datasets in a variety of ways. It offers comprehensive assistance for the entire experimental data
mining process, which includes preparing the input data, statistically assessing learning
schemes, and visualizing both the learning outcome and the input data. This approach involves
a large selection of preprocessing tools in addition to a broad range of learning methods.
Through a single interface, users may access this extensive and varied toolbox and compare
various approaches to determine which is best suited for the given challenge. The WEKA was
developed at the University of Waikato in New Zealand; the name stands for the Waikato
Environment for Knowledge Analysis (Frank et al., 2016). Weka is open-source software issued
under the GNU General Public Licence (The University of Waikato, 2024).

The Waikato Environment for Knowledge Analysis is referred to as the WEKA. It is an open-
source tool used in the daily work of a data scientist to carry out various machine learning and
data mining tasks. There are two ways you can use WEKA. Nonetheless, the graphical user
interface, or GUI, is the most effective method of using it. You may easily complete the tasks
by using the provided controls while using the tool through a graphical user interface (GUI).
For instance, the open file dialogue box makes it simple to load datasets from an existing file.
All that is needed to complete the classification process is loading the dataset and choosing the
right classification technique. WEKA offers the "Explorer" interface for this purpose.
KnowledgeFlow is an additional graphical user interface that allows the use of icons to
accomplish various data mining operations (Figure 3). Various components, such as datasets,
algorithms, and visualization techniques, may be represented by distinct icons. As the name
suggests, WEKA's third interface, the Experimenter, assists you in conducting various
experiments, such as determining which classification algorithm works best for a given dataset
and which parameters boost accuracy. Workbench and SimpleCLI are the names of two more
interfaces (Qamar and Raza, 2023).
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Figure 2. Workflow created in RapidMiner for this study
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Figure 3. Workflow created in WEKA for this study

Discussion

The UCS and BTS were the dependent variables, and the PLI was the independent variable. For
the purpose of the study for each tool, the input table was randomly divided into two partitions:
70% training data and 30% test data. To make the results more meaningful and easier to
evaluate, all the rocks were evaluated collectively before being categorized and examined
according to their geological origins (igneous, metamorphic, and sedimentary). The prediction
performances of the data mining tools were measured with the metric correlation coefficient
(r), mean absolute error (MAE), and root mean squared error (RMSE).

The question of whether the RMSE or MAE s better is covered in two seminal publications
in the geoscientific modelling literature: Willmott and Matsuura (Willmott & Matsuura, 2005)
and Chai and Draxler (Chai & Draxler, 2014). Two often used metrics for assessing prediction
models are the mean absolute error (MAE) and the root-mean-square error (RMSE). A common
statistical tool for assessing model performance in studies on climate, air quality, and
meteorology is the root mean square error (RMSE). Another helpful metric that is frequently
used in model evaluation is the MAE. There is no agreement on the best metric for model errors,
although they have both been used for many years to evaluate model performance (Hodson,
2022).

Let xi and yi represent the predicted and actual values, respectively, at data point i, and N be
the total number of data points. MAE and RMSE were defined using equations (1) and (2) (Chai
& Draxler, 2014):

MAE = <3 1x; — ;] (1)

RMSE = \/Zl i — )2 @

Figures 4-9 depict a comparison between the actual and predicted UCSs. These results aptly
demonstrate the model's impressive capacity to forecast UCS and BTS by PLI with remarkable
precision based on well logging data. In the figures, it is shown that the r values for all
assessments are significant. When all the rocks are evaluated together, r ranges between 0.72
and 0.75 for UCS-PLI and between 0.78 and 0.80 for BTS-PLI. For igneous rocks, r values
ranging between 0.77 and 0.91 for UCS-PLI and between 0.87 and 0.92 for BTS-PLI were
calculated. For metamorphic rocks, the r values between UCS-PLI and BTS-PLI vary from 0.88
to 0.93 and from 0.93 to 0.95, respectively. In sedimentary rocks, WEKA's prediction ability is
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better than that of other platforms. The r values for KNIME, RapidMiner, and WEKA between
UCS-PLI were 0.57, 0.55, and 0.64, respectively, and those between BTS-PLI were 0.68, 0.62
and 0.73, respectively.

According to the performance evaluation metrics in the figures, similar to the correlation
values, values that are close to each other are calculated. Only the MAE and RMSE values of
KNIME calculated for UCS-PLI in metamorphic rocks were very low. The MAEs were 37.99
and 32.57 for RapidMiner and WEKA, respectively, and 1.56 for KNIME. The RMSE values
were 44.98 and 40.77 for RapidMiner and WEKA, respectively, while it was 2.04 for KNIME.
All the statistical metrics are summarized in Tables 3 and 4.

The MAEs and RMSEs in Tables 3 and 4 show that the various data mining technologies'
performance measures yield reasonable results. According to the analysis of the MAEs and
RMSEs, each instrument effectively predicted both the BTS and UCS.

To summarize, the performance measures demonstrate that the data mining algorithms
employed in this investigation were successful in estimating the UCS and BTS of rock, which
aligns with previous research findings in the literature. In the UCS calculation of several
sedimentary and igneous rocks, for example, (Madhubabu et al., 2016; Ince et al., 2019;
Mahdiabadi & Khanlari, 2019; Hassan & Arman, 2023) reported the high prediction accuracy
and precision of linear regression models utilizing the PLI as the input parameter. High r values
varying between 0.911 and 0.954 were obtained by the authors, indicating a virtually perfect fit
between the expected and actual UCS values of the examined rock samples.

Table 3. The statistical metrics for UCS-PLI analysis

UCS-PLI
Performance metric Tool All rocks Igneous Metamorphic Sedimentary

Knime 0.72 0.91 0.93 0.57

" RapidMiner  0.74 0.77 0.92 0.55
Weka 0.75 0.88 0.88 0.64

Knime 25.86 14.99 1.56 23.65

MAE RapidMiner  23.34 23.32 37.99 23.94
Weka 26.84 12.08 32.57 23.57

Knime 35.03 20.23 2.04 31.03

RMSE RapidMiner  32.87 33.27 44,98 29.60
Weka 37.17 18.42 40.77 32.78

Table 4. The statistical metrics for BTS-PLI analysis

BTS-PLI
Performance metric Tool All rocks Igneous Metamorphic Sedimentary

Knime 0.80 0.92 0.95 0.68

r RapidMiner  0.80 0.87 0.93 0.62

Weka 0.78 0.87 0.95 0.73

Knime 241 2.30 1.33 1.93

MAE RapidMiner ~ 2.31 1.30 1.66 1.43
Weka 2.74 2.40 1.38 1.91

Knime 3.16 2.84 1.75 2.44

RMSE RapidMiner  3.17 1.64 2.30 1.79

Weka 3.63 2.83 1.64 2.68
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According to figures 10-15, the r values for the sedimentary rock group are lower than those
for the igneous and metamorphic rock groups when the prediction performances according to
the rock origin are examined. In contrast to the igneous and metamorphic rock groups, the
sedimentary rock group had lower r values for UCS and BTS predictions; however, this was
not the case for the MAE and RMSE values chosen for the performance measures. Compared
to those of the igneous and metamorphic rock groups, the MAE and RMSE values of the
sedimentary rock group were lower. This is assumed to be because the sedimentary rock group
has more data than the igneous and metamorphic rock groups. This demonstrates that while the
r-value declines somewhat in large datasets, the prediction tools' error rate-that is, the
discrepancy between the predicted and actual values-decreases.

The exceptional prediction performance of these machine learning models for a range of
input parameters, as demonstrated by our study and the literature review, demonstrates their
proficiency and resilience in UCS and BTS prediction. Nevertheless, disparities in prediction
accuracy were found when comparing the performance of the models employed in this
investigation with those in other investigations.
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The reason for this disparity may be traced back to the selection of input parameters and the
size of the dataset (Althnian et al., 2021). Studies differ in the input parameters they choose,
which could account for some of the models assessed in the literature having higher prediction
accuracy than our study. This could be a result of some input features producing more accurate
predictions due to their better association with UCS and BTS than the input features employed
in this investigation. Furthermore, it is possible that some models were applied using particular
optimization techniques other than those employed in this investigation, which may have
increased the accuracy of their predictions.

Conclusion

This paper investigated the predictability of UCS and BTS with PLI using different machine
learning platform data mining tools without writing any code. This is thought to significantly
lower the barrier to entry for machine learning. Domain experts, business analysts, and
researchers who understand their data deeply but lack coding skills can directly build and
experiment with machine learning models. This will foster innovation and allow for faster
iteration. By removing the complexity of coding, users will be able to focus on the important
aspects of the problem. The data from studies that assessed UCS, BTS, and PLI values together
in the literature were collected to create a database. The key findings are summarized as follows.
The results of this study indicate that all three platforms' data mining tools exhibited remarkable
proficiency in predicting UCS and BTS using PLI. In other words, all three platforms'
prediction tools can be successfully and reliably used to predict the UCS and BTS using PLI.
The r values are quite high for igneous and metamorphic rocks, high for all the rocks considered
together, and acceptable for sedimentary rocks. According to the results, the relationship
between BTS and PLI is better than the relationship between UCS and PLI. Utilizing machine
learning platforms in the estimation of rock parameters such as UCS and BTS is thought to
offer an economical and fast solution, especially for industry. For such platforms, it is very
important to recognize that large datasets need to be created from the work of scientists, and
with wide applicability, different geological formations and more experiments need to be
performed. In addition, this study has shown that instead of multi-input parameter estimation
models, single-input parameter estimation models also yield good results with high accuracy
and can be used in the estimation of UCS and BTS. This will save time and effort. In the future,
it will be important to investigate the usability of other open-source machine platforms not used
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in this study for predicting the UCS and BTS of rocks.
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